Difference between revisions of "Graf's Addition Theorem"

From WikiWaves
Jump to navigationJump to search
m
Line 10: Line 10:
 
</math></center>
 
</math></center>
 
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions]
 
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions]
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>,
+
<math>\,\!J_\nu</math>, <math>\,\!I_\nu</math>, <math>\,\!Y_\nu</math>, <math>\,\!K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>,
 
<math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions  
 
<math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions  
 
with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and
 
with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and

Revision as of 05:26, 24 December 2008

Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form

[math]\displaystyle{ C_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} C_{\nu + \mu} (\eta R_{jl}) \, J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ \,\!J_\nu }[/math], [math]\displaystyle{ \,\!I_\nu }[/math], [math]\displaystyle{ \,\!Y_\nu }[/math], [math]\displaystyle{ \,\!K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j) }[/math] and [math]\displaystyle{ (r_l,\theta_l) }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer).


Explicit versions of the theorem are given below,

[math]\displaystyle{ H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\eta R_{jl}) \, J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]
[math]\displaystyle{ K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

This theorem form the basis for Kagemoto and Yue Interaction Theory.