Difference between revisions of "Green Function Methods for Floating Elastic Plates"

From WikiWaves
Jump to navigationJump to search
Line 13: Line 13:
  
 
= Equations of Motion =
 
= Equations of Motion =
 +
 +
We begin with the equations of motion in non-dimensional form for a
 +
single [[Floating Elastic Plate]] which occupies the region <math>-b\leq<x<\leq b</math>
 +
<center><math>\begin{matrix}
 +
\left(\frac{\partial^2}{\partial x^2} +
 +
\frac{\partial^2}{\partial z^2} - k_y^2\right) \phi = 0 \;\;\;\; \mbox{ for } -h < z \leq 0,
 +
\end{matrix}</math></center>
 +
<center><math>\begin{matrix}
 +
\frac{\partial \phi}{\partial z} = 0 \;\;\;\; \mbox{ at } z = - h,
 +
\end{matrix}</math></center>
 +
<center><math>\begin{matrix}
 +
\left( \beta \left(\frac{\partial^2}{\partial x^2} - k^2_y\right)^2
 +
- \gamma\alpha + 1\right)\frac{\partial \phi}{\partial z} - \alpha\phi = 0 \;\;\;\;
 +
\mbox{ at } z = 0, \;\;\; -b \leq x \leq b,
 +
\end{matrix}</math></center>
 +
where <math>\alpha = \omega^2</math> and
 +
<center><math>\begin{matrix}
 +
\left(\frac{\partial^3}{\partial x^3} - (2 - \nu)k^2_y\frac{\partial}{\partial x}\right) \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = l_\mu,r_\mu,
 +
\end{matrix}</math></center>
 +
<center><math>\begin{matrix}(17)
 +
\left(\frac{\partial^2}{\partial x^2} - \nu k^2_y\right)\frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = l_\mu,r_\mu.
 +
\end{matrix}</math></center>

Revision as of 09:03, 13 December 2006

Introduction

The problem of a two-dimensional Floating Elastic Plate was solved using a Free-Surface Green Function by Newman 1994 and Meylan and Squire 1994. We describe here both methods (which are closely related).

The closest solution to the one presented here was derived by Hermans04, based on an earlier solution for a single plate Hermans03. This solution was for a set of finite elastic plates of arbitrary properties. That problem differed from the one presented here, only by requiring that the semi-infinite regions are open water. The solution method presented in Hermans04 was quite different from the one presented here, and it was based on using the free-surface Green function.

Equations of Motion

We begin with the equations of motion in non-dimensional form for a single Floating Elastic Plate which occupies the region [math]\displaystyle{ -b\leq\lt x\lt \leq b }[/math]

[math]\displaystyle{ \begin{matrix} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} - k_y^2\right) \phi = 0 \;\;\;\; \mbox{ for } -h \lt z \leq 0, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \frac{\partial \phi}{\partial z} = 0 \;\;\;\; \mbox{ at } z = - h, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \left( \beta \left(\frac{\partial^2}{\partial x^2} - k^2_y\right)^2 - \gamma\alpha + 1\right)\frac{\partial \phi}{\partial z} - \alpha\phi = 0 \;\;\;\; \mbox{ at } z = 0, \;\;\; -b \leq x \leq b, \end{matrix} }[/math]

where [math]\displaystyle{ \alpha = \omega^2 }[/math] and

[math]\displaystyle{ \begin{matrix} \left(\frac{\partial^3}{\partial x^3} - (2 - \nu)k^2_y\frac{\partial}{\partial x}\right) \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = l_\mu,r_\mu, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix}(17) \left(\frac{\partial^2}{\partial x^2} - \nu k^2_y\right)\frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = l_\mu,r_\mu. \end{matrix} }[/math]