Difference between revisions of "Green Function Methods for Floating Elastic Plates"

From WikiWaves
Jump to navigationJump to search
(spelling error)
(changing notation for radiated potential, consistency checks)
Line 21: Line 21:
  
 
This solution is discussed further in [[Eigenfunctions for a Free Beam]]. <br /><br />
 
This solution is discussed further in [[Eigenfunctions for a Free Beam]]. <br /><br />
Recall the condition
+
Using the expression <math>\partial_n \phi =\partial_t w</math>, we can form
<center>
 
<math>
 
\frac{\partial \phi}{\partial n}=\frac{\partial w}{\partial t}
 
</math></center>
 
This can be expressed in the form
 
 
<center>
 
<center>
 
<math>
 
<math>
Line 58: Line 53:
 
the diffracted and radiation potentials in the standard way,
 
the diffracted and radiation potentials in the standard way,
 
as for a rigid body.
 
as for a rigid body.
 +
<center><math>
 +
\phi=\phi^{(d)}+\phi^{(r)} ,\,
 +
</math></center>
 
We begin with the diffraction potential <math>\phi^{(d)}</math> which
 
We begin with the diffraction potential <math>\phi^{(d)}</math> which
 
satisfies the following equations
 
satisfies the following equations
Line 114: Line 112:
 
</math></center> <br /><br />
 
</math></center> <br /><br />
  
We now consider the radiation potentials <math>\phi^{(n)}</math>, which satisfy the
+
We now consider the radiation potentials <math>\phi^{(r)}</math>.  We can express the radiation potential as:
following equations
+
<center><math>
 +
\phi^{(r)}=\sum_{n=0}^{\infty}\zeta_n \phi_n^{(r)}
 +
</math></center>
 +
which satisfy the following equations
 
<center><math>
 
<center><math>
\Delta\phi^{(n)}    =0,\,\,-h<z<0,
+
\Delta\phi_n^{(r)}    =0,\,\,-h<z<0,
 
</math></center>
 
</math></center>
 
<center><math>
 
<center><math>
\partial_{z}\phi^{(n)}    =0,\,\,z=-h,
+
\partial_{z}\phi_n^{(r)}    =0,\,\,z=-h,
 
</math></center>
 
</math></center>
 
<center><math>
 
<center><math>
\partial_{z}\phi^{(n)}    =\alpha\phi^{(n)},\,\,x\notin(-L,L),\, \,
+
\partial_{z}\phi_n^{(r)}    =\alpha\phi_n^{(r)},\,\,x\notin(-L,L),\, \,
 
z=0
 
z=0
 
</math></center>
 
</math></center>
 
<center><math>
 
<center><math>
\partial_{z}\phi^{(n)}    = i\omega w_{n},\,\,x\in(-L,L),\,\,z=0.
+
\partial_{z}\phi_n^{(r)}    = i\omega w_{n},\,\,x\in(-L,L),\,\,z=0.
 
</math></center>
 
</math></center>
 
The radiation condition for the radiation potential is
 
The radiation condition for the radiation potential is
 
<center><math>
 
<center><math>
\frac{\partial\phi^{(n)}}{\partial x}\pm ik\phi^{(n)}=0,\,\,\mathrm{as}
+
\frac{\partial\phi_n^{(r)}}{\partial x}\pm ik\phi_n^{(r)}=0,\,\,\mathrm{as}
 
\,\,x\rightarrow\pm\infty.
 
\,\,x\rightarrow\pm\infty.
 
</math></center>
 
</math></center>
 
Therefore we find the potential as
 
Therefore we find the potential as
 
<center><math>
 
<center><math>
\phi=\phi^{(d)} +\sum_{n=0}^{\infty}\zeta_{n}\phi^{(n)},
+
\phi=\phi^{(d)} +\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{(r)},
 
</math></center>
 
</math></center>
 
so that
 
so that
 
<center><math>
 
<center><math>
 
\sum_{n=0}^{\infty}\left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right)
 
\sum_{n=0}^{\infty}\left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right)
\zeta_{n}w_{n}=-i\omega\phi
+
\zeta_{n}w_{n}=-i\omega \left( \phi^{(d)}+\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{(r)} \right).
^{(s)}_-i\omega\sum_{n=0}^{\infty}\zeta_{n}\phi^{(n)}.
 
 
</math></center>
 
</math></center>
 
If we multiply by <math>w_m</math> and take an inner product over the plate we obtain
 
If we multiply by <math>w_m</math> and take an inner product over the plate we obtain
 
<center><math>
 
<center><math>
 
\left(  1+\beta\lambda_{n}^{4} - \alpha\gamma\right)  \zeta_{n}=-i\omega
 
\left(  1+\beta\lambda_{n}^{4} - \alpha\gamma\right)  \zeta_{n}=-i\omega
\int_{-b}^{b}\phi^{(s)}_\kappa w_{n}\mathrm{d}x +
+
\int_{-L}^{L}\phi^{(d)} w_{n}\mathrm{d}x +
 
\sum_{m=0}^{\infty}\left(\omega^2 a_{mn}(\omega) - i\omega b_{mn}(\omega)\right)
 
\sum_{m=0}^{\infty}\left(\omega^2 a_{mn}(\omega) - i\omega b_{mn}(\omega)\right)
 
\zeta_{m},
 
\zeta_{m},
Line 153: Line 153:
 
where the functions <math>a_{mn}(\omega)</math> and <math>b_{mn}(\omega)</math> are given by
 
where the functions <math>a_{mn}(\omega)</math> and <math>b_{mn}(\omega)</math> are given by
 
<center><math>
 
<center><math>
\omega^2 a_{mn}(\omega) -i\omega b_{mn}(\omega) = - i\omega\int_{-L}^{L}\phi^{(m)}w_{n}\mathrm{d}x,
+
\omega^2 a_{mn}(\omega) -i\omega b_{mn}(\omega) = - i\omega\int_{-L}^{L}\phi_m^{(r)}w_{n}\mathrm{d}x,
 
</math></center>
 
</math></center>
 
and they are referred to as the added mass and damping coefficients (see [[Added-Mass, Damping Coefficients And Exciting Forces]]
 
and they are referred to as the added mass and damping coefficients (see [[Added-Mass, Damping Coefficients And Exciting Forces]]
Line 164: Line 164:
 
We use the [[Free-Surface Green Function]] for two-dimensional waves, with singularity at
 
We use the [[Free-Surface Green Function]] for two-dimensional waves, with singularity at
 
the water surface since we are only
 
the water surface since we are only
interested in its value at <math>z=0.</math> Using this we can transform the  
+
interested in its value at <math>z=0.</math> Using this we can transform the system of equations to  
system of equations to  
 
  
 
<center><math>
 
<center><math>
\phi^{(d)}(x) = \phi^{i}(x) + \int_{-L}^{L}G(x,\xi)
+
\phi^{(s)}(x) = \phi^{In}(x) + \int_{-L}^{L}G(x,\xi) \alpha\phi^{(s)}(\xi) \mathrm{d} \xi
\alpha\phi^{(d)}(\xi) \mathrm{d} \xi
 
 
</math></center>
 
</math></center>
 
and  
 
and  
 
<center><math>
 
<center><math>
\phi^{(n)}(x) =  \int_{-L}^{L}G(x,\xi)
+
\phi_n^{(r)}(x) =  \int_{-L}^{L}G(x,\xi)
 
\left(
 
\left(
\alpha\phi^{(n)}(\xi) - i\omega w_n(\xi)
+
\alpha\phi_n^{(r)}(\xi) - i\omega w_n(\xi)
 
\right)\mathrm{d} \xi
 
\right)\mathrm{d} \xi
 
</math></center>
 
</math></center>
Line 184: Line 182:
  
 
We can calculate the Reflection and Transmission coefficients as follows
 
We can calculate the Reflection and Transmission coefficients as follows
 
+
<center>
 
{{energy_region_plates}}
 
{{energy_region_plates}}
 
+
</center>
 
Applying Green's theorem to <math>\phi</math> and <math>\phi^{i} </math> gives
 
Applying Green's theorem to <math>\phi</math> and <math>\phi^{i} </math> gives
 
<center><math>
 
<center><math>

Revision as of 06:20, 31 March 2009

Introduction

The problem of a two-dimensional Floating Elastic Plate was solved using a Free-Surface Green Function by Newman 1994 and Meylan and Squire 1994. We describe here both methods (which are closely related). A related paper was given by Hermans 2003 and we extended to multiple plates in Hermans 2004.

We present here the solution for a floating elastic plate using dry modes. We begin with the equations. The solution can also be found using Eigenfunction Matching for a Finite Floating Elastic Plate using Symmetry.


Equations for a Finite Plate in Frequency Domain

We consider the problem of small-amplitude waves which are incident on finite floating elastic plate occupying water surface for [math]\displaystyle{ -L\lt x\lt L }[/math]. These equations are derived in Floating Elastic Plate The submergence of the plate is considered negligible. We assume that the problem is invariant in the [math]\displaystyle{ y }[/math] direction. We also assume that the plate edges are free to move at each boundary, although other boundary conditions could easily be considered using the methods of solution presented here. We begin with the Frequency Domain Problem for a semi-infinite Floating Elastic Plates in the non-dimensional form of Tayler 1986 (Dispersion Relation for a Floating Elastic Plate). We also assume that the waves are normally incident (incidence at an angle will be discussed later).

[math]\displaystyle{ \Delta \phi = 0, \;\;\; -h \lt z \leq 0, }[/math]
[math]\displaystyle{ \partial_z \phi = 0, \;\;\; z = - h, }[/math]
[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0,\,x\lt -L,\,\,{\rm or}\,\,x\gt L }[/math]
[math]\displaystyle{ \partial_x^2\left\{\beta(x) \partial_x^2\partial_z \phi\right\} - \left( \gamma(x)\alpha - 1 \right) \partial_z \phi - \alpha\phi = 0, \;\; z = 0, \;\;\; -L \leq x \leq L, }[/math]

where [math]\displaystyle{ \alpha = \omega^2 }[/math], [math]\displaystyle{ \beta }[/math] and [math]\displaystyle{ \gamma }[/math] are the stiffness and mass constant for the plate respectively. The free edge conditions at the edge of the plate imply

[math]\displaystyle{ \partial_x^3 \partial_z\phi = 0, \;\; z = 0, \;\;\; x = \pm L, }[/math]
[math]\displaystyle{ \partial_x^2 \partial_z\phi = 0, \;\; z = 0, \;\;\; x = \pm L, }[/math]

Transformation using Eigenfunctions for a Uniform Free Beam

We can find eigenfunctions which satisfy

[math]\displaystyle{ \partial_x^4 X_n = \lambda_n^4 X_n \,\,\, -L \leq x \leq L }[/math]

plus the edge conditions of zero bending moment and shear stress

[math]\displaystyle{ \begin{matrix} \partial_x^3 X_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \partial_x^2 X_n = 0 \;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

This solution is discussed further in Eigenfunctions for a Free Beam.

Using the expression [math]\displaystyle{ \partial_n \phi =\partial_t w }[/math], we can form

[math]\displaystyle{ \frac{\partial \phi}{\partial z} = i\omega \sum_{n=0}^{\infty} \zeta_n w_n }[/math]

where [math]\displaystyle{ \zeta_n \, }[/math] are coefficients to be evaluated.

Equation in Terms of the Modes of the Plate

Under these assumptions, the equations become

[math]\displaystyle{ \Delta\phi =0,\,\,-h\lt z\lt 0, }[/math]
[math]\displaystyle{ \partial_{z}\phi =0,\,\,z=-h, }[/math]
[math]\displaystyle{ \alpha\phi =\partial_{z}\phi,\,\,x\notin(-L,L),\ \ z=0, }[/math]
[math]\displaystyle{ i\omega\sum_{n=0}^{\infty}\zeta_{n}w_{n} =\partial_{z}\phi,\,\,x\in (-L,L),\,\, z=0, }[/math]
[math]\displaystyle{ \sum_{n=0}^{\infty}\zeta_{n}\left( 1+\beta\lambda_{n}^{4}\right) w_{n}-\alpha\gamma\sum_{n=0}^{\infty}\zeta_{n}w_{n} = -i\omega \phi,\,\,x\in(-L,L),\,\, z=0. }[/math]

We solve for the potential (and displacement) as the sum of the diffracted and radiation potentials in the standard way, as for a rigid body.

[math]\displaystyle{ \phi=\phi^{(d)}+\phi^{(r)} ,\, }[/math]

We begin with the diffraction potential [math]\displaystyle{ \phi^{(d)} }[/math] which satisfies the following equations

[math]\displaystyle{ \Delta\phi^{(d)} =0,\,\,-h\lt z\lt 0, }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(d)} =0,\,\,z=-h, }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(d)} =\alpha \phi^{(d)},\,\,x\notin(-L,L),\,\, z=0, }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(d)} =0,\,\,x\in(-L,L),\,\,z=0. }[/math]

Furthermore, [math]\displaystyle{ \phi^{(d)} }[/math] satisfies the Sommerfeld Radiation Condition

[math]\displaystyle{ \frac{\partial}{\partial x} \left(\phi^{(d)}-\phi^{\rm In} \right) \pm ik\left( \phi^{(d)}-\phi^{\rm In}\right) = 0 ,\,\,\mathrm{as} \,\,x\rightarrow\pm\infty, }[/math]

where [math]\displaystyle{ k ,\, }[/math] is the wavenumber, which is the positive real solution of the Dispersion Relation for a Free Surface

[math]\displaystyle{ k\tanh(kh)=\omega^{2} \, }[/math]

and [math]\displaystyle{ \phi^{\rm In} }[/math] is the incident wave given by

[math]\displaystyle{ \phi^{\rm In} = \frac{i\omega}{k\sinh kh} \cosh k(z+h) e^{-i kx} }[/math]

(which has unit amplitude in displacement) and is travelling towards positive infinity

We now consider the scattered potentials [math]\displaystyle{ \phi^{(s)} }[/math]. The relationship between scattered potentials, diffracted potentials and the incident wave are as follows:

[math]\displaystyle{ \phi^{(d)}=\phi^{(In)}+\phi^{(s)} \, }[/math]

from this, we can construct the following conditions:

[math]\displaystyle{ \Delta\phi^{(s)} =0,\,\,-h\lt z\lt 0, }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(s)} =0,\,\,z=-h, }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(s)} =\alpha\phi^{(s)},\,\,x\notin(-L,L),\, \, z=0 }[/math]
[math]\displaystyle{ \partial_{z}\phi^{(s)} = -\partial_{z}\phi^{(In)},\,\,x\in(-L,L),\,\,z=0. }[/math]



We now consider the radiation potentials [math]\displaystyle{ \phi^{(r)} }[/math]. We can express the radiation potential as:

[math]\displaystyle{ \phi^{(r)}=\sum_{n=0}^{\infty}\zeta_n \phi_n^{(r)} }[/math]

which satisfy the following equations

[math]\displaystyle{ \Delta\phi_n^{(r)} =0,\,\,-h\lt z\lt 0, }[/math]
[math]\displaystyle{ \partial_{z}\phi_n^{(r)} =0,\,\,z=-h, }[/math]
[math]\displaystyle{ \partial_{z}\phi_n^{(r)} =\alpha\phi_n^{(r)},\,\,x\notin(-L,L),\, \, z=0 }[/math]
[math]\displaystyle{ \partial_{z}\phi_n^{(r)} = i\omega w_{n},\,\,x\in(-L,L),\,\,z=0. }[/math]

The radiation condition for the radiation potential is

[math]\displaystyle{ \frac{\partial\phi_n^{(r)}}{\partial x}\pm ik\phi_n^{(r)}=0,\,\,\mathrm{as} \,\,x\rightarrow\pm\infty. }[/math]

Therefore we find the potential as

[math]\displaystyle{ \phi=\phi^{(d)} +\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{(r)}, }[/math]

so that

[math]\displaystyle{ \sum_{n=0}^{\infty}\left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right) \zeta_{n}w_{n}=-i\omega \left( \phi^{(d)}+\sum_{n=0}^{\infty}\zeta_{n}\phi_n^{(r)} \right). }[/math]

If we multiply by [math]\displaystyle{ w_m }[/math] and take an inner product over the plate we obtain

[math]\displaystyle{ \left( 1+\beta\lambda_{n}^{4} - \alpha\gamma\right) \zeta_{n}=-i\omega \int_{-L}^{L}\phi^{(d)} w_{n}\mathrm{d}x + \sum_{m=0}^{\infty}\left(\omega^2 a_{mn}(\omega) - i\omega b_{mn}(\omega)\right) \zeta_{m}, }[/math]

where the functions [math]\displaystyle{ a_{mn}(\omega) }[/math] and [math]\displaystyle{ b_{mn}(\omega) }[/math] are given by

[math]\displaystyle{ \omega^2 a_{mn}(\omega) -i\omega b_{mn}(\omega) = - i\omega\int_{-L}^{L}\phi_m^{(r)}w_{n}\mathrm{d}x, }[/math]

and they are referred to as the added mass and damping coefficients (see Added-Mass, Damping Coefficients And Exciting Forces for the equivalent definition for a rigid body). respectively. This equation is solved by truncating the number of modes.

Solution for the Radiation and Diffracted Potential

We use the Free-Surface Green Function for two-dimensional waves, with singularity at the water surface since we are only interested in its value at [math]\displaystyle{ z=0. }[/math] Using this we can transform the system of equations to

[math]\displaystyle{ \phi^{(s)}(x) = \phi^{In}(x) + \int_{-L}^{L}G(x,\xi) \alpha\phi^{(s)}(\xi) \mathrm{d} \xi }[/math]

and

[math]\displaystyle{ \phi_n^{(r)}(x) = \int_{-L}^{L}G(x,\xi) \left( \alpha\phi_n^{(r)}(\xi) - i\omega w_n(\xi) \right)\mathrm{d} \xi }[/math]

Details about this method can be found in Integral Equation for the Finite Depth Green Function at Surface.

Reflection and Transmission Coefficients

We can calculate the Reflection and Transmission coefficients as follows

A diagram depicting the area [math]\displaystyle{ \Omega }[/math] which is bounded by the rectangle [math]\displaystyle{ \partial\Omega }[/math].The rectangle [math]\displaystyle{ \partial\Omega }[/math] is bounded by [math]\displaystyle{ -h\leq z \leq0 }[/math] and [math]\displaystyle{ -\infty/-N\leq x \leq N/\infty }[/math]

Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^{i} }[/math] gives

[math]\displaystyle{ 0 = \iint_{\Omega}(\phi\nabla^2\phi^{i} - \phi^{i}\nabla^2\phi)\mathrm{d}x\mathrm{d}z = \int_{\partial\Omega}(\phi\frac{\partial\phi^*}{\partial n} - \phi^*\frac{\partial\phi}{\partial n})\mathrm{d}l, }[/math]
[math]\displaystyle{ = \int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x - k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z. }[/math]

Therefore

[math]\displaystyle{ R = k_0 \frac{\int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x } {\int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}. }[/math]

and using a wave incident from the right we obtain

[math]\displaystyle{ 1 + T = k_0 \frac{\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x } {\int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}. }[/math]

Matlab Code

A program to calculate the solution in elastic modes can be found here A program to calculate the solution in elastic modes can be found here

elastic_plate_modes.m

Additional code

This program requires

Additional code

This program requires

Alternative Solution Method using Green Function for the Plate

We can also solve the equation by a closely related method which was given in Meylan and Squire 1994. We can transform the equations to

[math]\displaystyle{ \phi(x) = \phi^{\rm In}(x) + \int_{-L}^{L}G(x,\xi) \left( \alpha\phi(\xi) - \partial_z\phi(\xi) \right)\mathrm{d} \xi }[/math]

Expanding as before

[math]\displaystyle{ \partial_z \phi = i\omega \sum \xi_n w_n }[/math]

we obtain

[math]\displaystyle{ -i\omega \phi = \sum \left(\beta\lambda_n^4 - \gamma\alpha + 1\right)\xi_n w_n }[/math]

This leads to the following equation

[math]\displaystyle{ \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} \frac{w_n(x)w_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1} \phi(\xi)\mathrm{d}\xi }[/math]

or

[math]\displaystyle{ \partial_z\phi(x) = \frac{1}{\alpha} \int_{-L}^{L} g(x,\xi) \phi(\xi)\mathrm{d}\xi }[/math]

where

[math]\displaystyle{ g(x,\xi) = \frac{w_n(x)w_n(\xi)}{\beta\lambda_n^4 - \gamma\alpha + 1} }[/math]

which is the Green function for the plate.