Difference between revisions of "Green Function Solution Method"

From WikiWaves
Jump to navigationJump to search
Line 27: Line 27:
 
\oint_{\partial U} \left( \psi {\partial \varphi \over \partial n} - \varphi {\partial \psi \over \partial n}\right)\, dS  
 
\oint_{\partial U} \left( \psi {\partial \varphi \over \partial n} - \varphi {\partial \psi \over \partial n}\right)\, dS  
 
</math></center>
 
</math></center>
If we then substitiute the [[Free-Surface Green Function]] which satisfies the following equations
+
If we then substitiute the [[Free-Surface Green Function]] which satisfies the following equations (plus the
 +
[[Sommerfeld Radiation Condition]] far from the body)
 
<center>
 
<center>
 
<math>
 
<math>
Line 44: Line 45:
 
</center>
 
</center>
 
for &psi; we obtain  
 
for &psi; we obtain  
 +
<center><math> \phi = \phi^{in}  + \int_{\partial\Omega} \left( \psi \nabla^2 \varphi - \varphi \nabla^2 \psi\right)\, dV =
 +
\oint_{\partial U} \left( \psi {\partial \varphi \over \partial n} - \varphi {\partial \psi \over \partial n}\right)\, dS
 +
</math></center>
 
[[Category:Linear Water-Wave Theory]]
 
[[Category:Linear Water-Wave Theory]]

Revision as of 21:35, 20 March 2007

Introduction

The use of the Free-Surface Green Function to solve the Standard Linear Wave Scattering Problem has proved one of the most powerful methods, primarily because of its very general nature so that it can deal with complicated boundary conditions. It also solves explicity for the boundary conditions at infinite (Sommerfeld Radiation Condition)

Standard Linear Wave Scattering Problem

We begin with the Standard Linear Wave Scattering Problem

[math]\displaystyle{ \nabla^{2}\phi=0, \, -\infty\lt z\lt 0,\,\,\,\mathbf{x}\notin \Omega }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z}=0, \, z=h, }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z} = k_{\infty}\phi,\,z=0,\,\,\mathbf{x}\notin\Omega, }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z} = L\phi, \, z\in\partial\Omega, }[/math]

We then use Green's second identity If φ and ψ are both twice continuously differentiable on U, then

[math]\displaystyle{ \int_U \left( \psi \nabla^2 \varphi - \varphi \nabla^2 \psi\right)\, dV = \oint_{\partial U} \left( \psi {\partial \varphi \over \partial n} - \varphi {\partial \psi \over \partial n}\right)\, dS }[/math]

If we then substitiute the Free-Surface Green Function which satisfies the following equations (plus the Sommerfeld Radiation Condition far from the body)

[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=-h, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z=0. }[/math]

for ψ we obtain

[math]\displaystyle{ \phi = \phi^{in} + \int_{\partial\Omega} \left( \psi \nabla^2 \varphi - \varphi \nabla^2 \psi\right)\, dV = \oint_{\partial U} \left( \psi {\partial \varphi \over \partial n} - \varphi {\partial \psi \over \partial n}\right)\, dS }[/math]