Interaction Theory for Infinite Arrays

From WikiWaves
Jump to navigationJump to search

Introduction

We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.

System of equations

We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely

[math]\displaystyle{ A_{m\mu}^l = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu}^l \Big[ \tilde{D}_{n\nu}^{l} + \sum_{j=1,j \neq l}^{N} \sum_{\tau = -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], }[/math]

[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].

For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by [math]\displaystyle{ R }[/math], we have [math]\displaystyle{ R_{jl} = |j-l| R }[/math] and

[math]\displaystyle{ \varphi_{n} = \begin{cases} \pi, & n\gt 0,\\ 0, & n\lt 0. \end{cases} }[/math]

Moreover, owing to the periodicity of the array as well as the ambient wave, the coefficients [math]\displaystyle{ A_{m\mu}^l }[/math] can be written as [math]\displaystyle{ A_{m\mu}^l = P_l A_{m\mu}^0 = P_l A_{m\mu} }[/math], where the phase factor [math]\displaystyle{ P_l }[/math] is given by

[math]\displaystyle{ P_l = \mathrm{e}^{\mathrm{i}Rk\cos \chi}, }[/math]

where [math]\displaystyle{ \chi }[/math] is the angle which the direction of the ambient waves makes with the [math]\displaystyle{ x }[/math]-axis. The same can be done for the coefficients of the ambient wave, i.e. [math]\displaystyle{ \tilde{D}_{n\nu}^{l} = P_l \tilde{D}_{n\nu} }[/math].

Therefore, the system simplifies to

[math]\displaystyle{ A_{m\mu} = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} \Big[ \tilde{D}_{n\nu} + (-1)^\nu \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sum_{j=-\infty,j \neq 0}^{\infty} P_{j} K_{\tau - \nu} (k_n |j|R) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{j-l}} \Big]. }[/math]

Introducing the constants

[math]\displaystyle{ \sigma^n_\nu = \sum_{j=-\infty,j \neq 0}^{\infty} P_{j} K_\nu(k_n|j|R) \mathrm{e}^{\mathrm{i}\nu \varphi_{j}} = \sum_{j=1}^{\infty} (P_{-j} + (-1)^\nu P_j) K_\nu(k_njR), }[/math]

which can be evaluated separately since they do not contain any unknowns, the problem reduces to

[math]\displaystyle{ A_{m\mu} = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} \Big[ \tilde{D}_{n\nu} + (-1)^\nu \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sigma^n_{\tau-\nu} \Big], }[/math]

[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math]. Note that this system of equations is for the body centred at the origin only. The scattered waves of all other bodies can be obtained from its solution by the simple formula [math]\displaystyle{ A_{m\mu}^l = P_l A_{m\mu} }[/math].