Difference between revisions of "Kagemoto and Yue Interaction Theory for Infinite Depth"

From WikiWaves
Jump to navigationJump to search
 
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=The extension of Kagemoto and Yue's interaction theory to bodies of arbitrary shape in water of infinite depth=
+
{{complete pages}}
  
[[kagemoto86]] developed an interaction theory for
+
==Introduction==
vertically non-overlapping axisymmetric structures in water of finite
 
depth. While their theory was valid for bodies of
 
arbitrary geometry, they did not develop all the necessary
 
details to apply the theory to arbitrary bodies.
 
The only requirements to apply this scattering theory is
 
that the bodies are vertically non-overlapping and
 
that the smallest cylinder which completely contains each body does not
 
intersect with any other body.
 
In this section we will extend their theory to bodies of
 
arbitrary geometry in water of infinite depth. The extension of
 
\citeauthor{kagemoto86}'s finite depth interaction theory to bodies of
 
arbitrary geometry was accomplished by [[goo90]].
 
  
 +
[[Kagemoto and Yue Interaction Theory]] applies in [[Finite Depth]] water.
 +
The theory was extended by [[Peter and Meylan 2004]] to [[Infinite Depth]] water
 +
and we present this theory here.
  
The interaction theory begins by representing the scattered potential
+
==Eigenfunction expansion of the potential==
of each body in the cylindrical eigenfunction expansion. Furthermore,
 
the incoming potential is also represented in the cylindrical
 
eigenfunction expansion. The operator which maps the incoming and
 
outgoing representation is called the diffraction transfer matrix and
 
is different for each body.
 
Since these representations are local to each body, a mapping of
 
the eigenfunction representations between different bodies
 
is required. This operator is called the coordinate transformation
 
matrix.
 
  
The cylindrical eigenfunction expansions will be introduced before we
+
The scattered potential of body <math>\Delta_j</math> can be expanded using
derive a system of
+
the [[Cylindrical Eigenfunction Expansion]] for [[Infinite Depth]],
equations for the coefficients of the scattered wavefields. Analogously to
+
<center><math>  
[[kagemoto86]], we represent the scattered wavefield of
 
each body as an incoming wave upon all other bodies. The addition of
 
the ambient incident wave yields the complete incident potential and
 
with the use of diffraction transfer matrices which relate the
 
coefficients of the incident potential to those of the scattered
 
wavefield a system of equations for the unknown coefficients of the
 
scattered wavefields of all bodies is derived.
 
 
 
 
 
===Eigenfunction expansion of the potential===
 
The equations of motion for the water are derived from the linearised
 
inviscid theory. Under the assumption of irrotational motion the
 
velocity vector field of the water can be written as the gradient
 
field of a scalar velocity potential <math>\Phi</math>. Assuming that the motion
 
is time-harmonic with the radian frequency <math>\omega</math> the
 
velocity potential can be expressed as the real part of a complex
 
quantity,
 
<center><math> (time)
 
\Phi(\mathbf{y},t) = \Re \{\phi (\mathbf{y}) \mathrm{e}^{-\mathrm{i}\omega t} \}.
 
</math></center>
 
To simplify notation, <math>\mathbf{y} = (x,y,z)</math> will always denote a point
 
in the water, which is assumed infinitely deep, while <math>\mathbf{x}</math> will
 
always denote a point of the undisturbed water surface assumed at <math>z=0</math>.
 
 
 
The problem consists of <math>N</math> vertically non-overlapping bodies, denoted
 
by <math>\Delta_j</math>, which are sufficiently far apart that there is no
 
intersection of the smallest cylinder which contains each body with
 
any other body. Each body is subject to an incident wavefield which is
 
incoming, responds to this wavefield and produces a scattered wave field which
 
is outgoing. Both the incident and scattered potential corresponding
 
to these wavefields can be represented in the cylindrical
 
eigenfunction expansion valid outside of the escribed cylinder of the
 
body. Let <math>(r_j,\theta_j,z)</math> be the local cylindrical coordinates of
 
the <math>j</math>th body, <math>\Delta_j</math>, <math>j \in \{1, \ldots , N\}</math>, and
 
<math>\alpha =\omega^2/g</math> where <math>g</math> is the acceleration due to gravity. Figure
 
(fig:floe_tri) shows these coordinate systems for two bodies.
 
 
 
The scattered potential of body <math>\Delta_j</math> can be expanded in
 
cylindrical eigenfunctions,
 
<center><math> (basisrep_out)
 
 
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
 
\infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
Line 82: Line 24:
 
modes are functions. <math>H_\nu^{(1)}</math> and <math>K_\nu</math> are the Hankel function
 
modes are functions. <math>H_\nu^{(1)}</math> and <math>K_\nu</math> are the Hankel function
 
of the first kind and the modified Bessel function of the second kind
 
of the first kind and the modified Bessel function of the second kind
respectively, both of order <math>\nu</math> as defined in [[Abramowitz and Stegun 1964]].  
+
respectively, both of order <math>\nu</math>  
 +
([http://en.wikipedia.org/wiki/Bessel_function : Bessel functions]).  
 
The incident potential upon body <math>\Delta_j</math> can be expanded in
 
The incident potential upon body <math>\Delta_j</math> can be expanded in
 
cylindrical eigenfunctions,  
 
cylindrical eigenfunctions,  
<center><math> (basisrep_in)
+
<center><math>  
 
\phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
 
\phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
 
\infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
 
\infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
Line 104: Line 47:
 
</math></center>
 
</math></center>
  
===The interaction in water of infinite depth===
+
==The interaction in water of infinite depth==
Following the ideas of [[kagemoto86]], a system of equations for the unknown
 
coefficients and coefficient functions of the scattered wavefields
 
will be developed. This system of equations is based on transforming the
 
scattered potential of <math>\Delta_j</math> into an incident potential upon
 
<math>\Delta_l</math> (<math>j \neq l</math>). Doing this for all bodies simultaneously,
 
and relating the incident and scattered potential for each body, a system
 
of equations for the unknown coefficients will be developed.
 
  
 
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
 
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
upon <math>\Delta_l</math>, <math>j \neq l</math>. From figure
+
upon <math>\Delta_l</math>, <math>j \neq l</math>. This can be accomplished by using
(fig:floe_tri) we can see that this can be accomplished by using
+
[[Graf's Addition Theorem]] to obtain,  
Graf's addition theorem for Bessel functions given in
+
<center><math>  
[[Abramowitz and Stegun 1964]],  
+
H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} =
<center><math> (transf)
 
\begin{matrix} (transf_h)
 
H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &=
 
 
\sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
 
\sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
\quad j \neq l,\\
+
\quad j \neq l,
(transf_k)
+
</math></center>
K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &= \sum_{\mu = -
+
<center><math>
 +
K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = -
 
\infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
\infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
 
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
\end{matrix}
 
 
</math></center>
 
</math></center>
 
which is valid provided that <math>r_l < R_{jl}</math>. This limitation
 
which is valid provided that <math>r_l < R_{jl}</math>. This limitation
Line 143: Line 76:
 
the scattered potential of <math>\Delta_j</math> can be expressed in terms of the
 
the scattered potential of <math>\Delta_j</math> can be expressed in terms of the
 
incident potential upon <math>\Delta_l</math>,
 
incident potential upon <math>\Delta_l</math>,
<center><math>\begin{matrix}
+
<center><math>
\phi_j^{\mathrm{S}} (r_l,\theta_l,z) &=  
+
\phi_j^{\mathrm{S}} (r_l,\theta_l,z) =  
 
\mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j  
 
\mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j  
 
\sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
 
\sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
\vartheta_{jl}}\\
+
\vartheta_{jl}}
& \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
+
</math></center>
 +
<center><math>
 +
\quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
 
\infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
 
\infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
 
(-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
(-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
\theta_l}  \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta\\
+
\theta_l}  \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
+
</math></center>
 +
<center><math>
 +
= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
 
\infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
 
\infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
(\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
+
(\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
+ \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
 
  \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
 
  \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
 
(\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
(\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
\vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.  
 
\vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.  
\end{matrix}</math></center>
+
</math></center>
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
 
expanded in the eigenfunctions corresponding to the incident wavefield upon
 
expanded in the eigenfunctions corresponding to the incident wavefield upon
<math>\Delta_l</math>. A detailed illustration of how to accomplish this will be given
+
<math>\Delta_l</math> (cf. the example in [[Cylindrical Eigenfunction Expansion]]). Let <math>D_{l0\mu}^{\mathrm{In}}</math> denote the coefficients of this
later. Let <math>D_{l0\mu}^{\mathrm{In}}</math> denote the coefficients of this
 
 
ambient incident wavefield corresponding to the propagating modes and
 
ambient incident wavefield corresponding to the propagating modes and
 
<math>D_{l\mu}^{\mathrm{In}} (\cdot)</math>  denote the coefficients functions
 
<math>D_{l\mu}^{\mathrm{In}} (\cdot)</math>  denote the coefficients functions
Line 170: Line 108:
 
the incoming eigenfunction expansion for <math>\Delta_l</math>. The total
 
the incoming eigenfunction expansion for <math>\Delta_l</math>. The total
 
incident wavefield upon body <math>\Delta_j</math> can now be expressed as  
 
incident wavefield upon body <math>\Delta_j</math> can now be expressed as  
<center><math>\begin{matrix}
+
<center><math>
&\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
+
\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
 
\sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
 
\sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
(r_l,\theta_l,z)\\
+
(r_l,\theta_l,z)
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
+
</math></center>
 +
<center><math>
 +
= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
 
  D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
  D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
  (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
+
  (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
+
</math></center>
 +
<center><math>
 +
+ \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
 
-\infty}^{\infty} \Big[  D_{l\mu}^{\mathrm{In}}(\eta) +
 
-\infty}^{\infty} \Big[  D_{l\mu}^{\mathrm{In}}(\eta) +
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
Line 185: Line 127:
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
 
\mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
 
\mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
\end{matrix}</math></center>
+
</math></center>
 
The coefficients of the total incident potential upon <math>\Delta_l</math> are
 
The coefficients of the total incident potential upon <math>\Delta_l</math> are
 
therefore given by
 
therefore given by
<center><math> (inc_coeff)
+
<center><math>
 
D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}  
 
D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}  
 
+ \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
+ \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
Line 204: Line 146:
 
In general, it is possible to relate the total incident and scattered
 
In general, it is possible to relate the total incident and scattered
 
partial waves for any body through the diffraction characteristics of
 
partial waves for any body through the diffraction characteristics of
that body in isolation. There exist diffraction transfer operators
+
that body in isolation. The [[Diffraction Transfer Matrix for Infinite Depth]]
<math>B_l</math> that relate the coefficients of the incident and scattered
+
(strictly an operator)
 +
<math>B_l</math> relates the coefficients of the incident and scattered
 
partial waves, such that
 
partial waves, such that
<center><math> (eq_B)
+
<center><math>  
 
A_l = B_l (D_l), \quad l=1, \ldots, N,
 
A_l = B_l (D_l), \quad l=1, \ldots, N,
 
</math></center>
 
</math></center>
 
where <math>A_l</math> are the scattered modes due to the incident modes <math>D_l</math>.
 
where <math>A_l</math> are the scattered modes due to the incident modes <math>D_l</math>.
In the case of a countable number of modes, (i.e. when
+
Fro the [[Finite Depth]] case, <math>B_l</math> is an infinite dimensional matrix. For
the depth is finite), <math>B_l</math> is an infinite dimensional matrix. When
+
[[Infinite Depth]] <math>B_l</math> is the kernel of an integral operator.  
the modes are functions of a continuous variable (i.e. infinite
 
depth), <math>B_l</math> is the kernel of an integral operator.  
 
 
For the propagating and the decaying modes respectively, the scattered
 
For the propagating and the decaying modes respectively, the scattered
potential can be related by diffraction transfer operators acting in the
+
potential can be related by the [[Diffraction Transfer Matrix for Infinite Depth]] in the
 
following ways,
 
following ways,
<center><math> (diff_op)
+
<center><math>  
\begin{matrix}
+
A_{0\nu}^l = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
A_{0\nu}^l &= \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
 
 
+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
 
+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,\\
+
B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,
A_\nu^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
A_\nu^l (\eta) = \sum_{\mu = -\infty}^{\infty}
 
B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
 
B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
 
\sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
 
\sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
 
D_{\mu}^l (\xi) \mathrm{d}\xi.
 
D_{\mu}^l (\xi) \mathrm{d}\xi.
\end{matrix}
 
 
</math></center>  
 
</math></center>  
 
The superscripts <math>\mathrm{p}</math> and <math>\mathrm{d}</math> are used to distinguish
 
The superscripts <math>\mathrm{p}</math> and <math>\mathrm{d}</math> are used to distinguish
 
between propagating and decaying modes, the first superscript denotes the kind
 
between propagating and decaying modes, the first superscript denotes the kind
 
of scattered mode, the second one the kind of incident mode.
 
of scattered mode, the second one the kind of incident mode.
If the diffraction transfer operators are known (their calculation
+
If the [Diffraction Transfer Matrix for Infinite Depth]] are substituted we
will be discussed later), the substitution of
+
obtain the
equations  (inc_coeff) into equations  (diff_op) give the
 
 
required equations to determine the coefficients and coefficient
 
required equations to determine the coefficients and coefficient
 
functions of the scattered wavefields of all bodies,
 
functions of the scattered wavefields of all bodies,
<center><math> (eq_op)
+
<center><math>  
\begin{matrix}
+
A_{0n}^l = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}  
A_{0n}^l =& \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}  
 
 
\Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
  (\nu - \mu) \vartheta_{jl}} \Big]\\
+
  (\nu - \mu) \vartheta_{jl}} \Big]
  &+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
  + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
 
B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
 
B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,\\
+
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,
A_n^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
A_n^l (\eta) = \sum_{\mu = -\infty}^{\infty}
 
B_{ln\mu}^\mathrm{dp} (\eta) \Big[
 
B_{ln\mu}^\mathrm{dp} (\eta) \Big[
 
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
  (\nu - \mu) \vartheta_{jl}}\Big]\\
+
  (\nu - \mu) \vartheta_{jl}}\Big]
& + \int\limits_{0}^{\infty}
+
</math></center>
 +
<center><math>
 +
+ \int\limits_{0}^{\infty}
 
\sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
 
\sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
 
\Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
 
\Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
Line 261: Line 206:
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
\end{matrix}
 
 
</math></center>
 
</math></center>
<math>n \in \mathit{Z},\, l = 1, \ldots, N</math>. It has to be noted that all
+
<math>n \in \mathbb{Z},\, l = 1, \ldots, N</math>. It has to be noted that all
 
equations are coupled so that it is necessary to solve for all
 
equations are coupled so that it is necessary to solve for all
 
scattered coefficients and coefficient functions simultaneously.  
 
scattered coefficients and coefficient functions simultaneously.  
Line 273: Line 217:
 
<center><math>
 
<center><math>
 
\mathbf{B}_l = \left[  
 
\mathbf{B}_l = \left[  
\begin{matrix}{cc} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
+
\begin{matrix} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
 
\mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
 
\mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
 
\end{matrix} \right],
 
\end{matrix} \right],
Line 282: Line 226:
 
<math>\Delta_l</math>, <math>\mathbf{d}_l^{\mathrm{In}}</math> to be the vector of
 
<math>\Delta_l</math>, <math>\mathbf{d}_l^{\mathrm{In}}</math> to be the vector of
 
coefficients of the ambient wavefield, and making use of a coordinate
 
coefficients of the ambient wavefield, and making use of a coordinate
transformation matrix <math>{\mathbf T}_{jl}</math> given by
+
transformation matrix <math>{\mathbf T}_{lj}</math> given by
<center><math> (T_elem_deep)
+
<center><math>  
({\mathbf T}_{jl})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
+
({\mathbf T}_{lj})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
 
\vartheta_{jl}}
 
\vartheta_{jl}}
 
</math></center>
 
</math></center>
 
for the propagating modes, and
 
for the propagating modes, and
 
<center><math>
 
<center><math>
({\mathbf T}_{jl})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
+
({\mathbf T}_{lj})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
 
(p-q) \vartheta_{jl}}
 
(p-q) \vartheta_{jl}}
 
</math></center>
 
</math></center>
 
for the decaying modes, a linear system of equations
 
for the decaying modes, a linear system of equations
for the unknown coefficients follows from equations  (eq_op),
+
for the unknown coefficients follows
<center><math> (eq_Binf)
+
<center><math>  
 
{\mathbf a}_l =  
 
{\mathbf a}_l =  
 
{\mathbf {B}}_l \Big(  
 
{\mathbf {B}}_l \Big(  
 
{\mathbf d}_l^{\mathrm{In}} +
 
{\mathbf d}_l^{\mathrm{In}} +
\sum_{j=1,j \neq l}^{N} trans {\mathbf T}_{jl} \,
+
\sum_{j=1,j \neq l}^{N} {\mathbf T}_{lj} \,
  {\mathbf a}_j \Big), \quad  l=1, \ldots, N,
+
  {\mathbf a}_j \Big), \quad  l=1, \ldots, N.
 
</math></center>
 
</math></center>
where the left superscript <math>\mathrm{t}</math> indicates transposition.
 
 
The matrix <math>{\mathbf \hat{B}}_l</math> denotes the infinite depth diffraction
 
The matrix <math>{\mathbf \hat{B}}_l</math> denotes the infinite depth diffraction
 
transfer matrix <math>{\mathbf B}_l</math> in which the elements associated with
 
transfer matrix <math>{\mathbf B}_l</math> in which the elements associated with
Line 307: Line 250:
 
integration weights depending on the discretisation of the continuous variable.
 
integration weights depending on the discretisation of the continuous variable.
  
==Calculation of the diffraction transfer matrix for bodies of arbitrary geometry==
 
 
Before we can apply the interaction theory we require the diffraction
 
transfer matrices <math>\mathbf{B}_j</math> which relate the incident and the
 
scattered potential for a body <math>\Delta_j</math> in isolation.
 
The elements of the diffraction transfer matrix, <math>({\mathbf B}_j)_{pq}</math>,
 
are the coefficients of the
 
<math>p</math>th partial wave of the scattered potential due to a single
 
unit-amplitude incident wave of mode <math>q</math> upon <math>\Delta_j</math>.
 
 
While \citeauthor{kagemoto86}'s interaction theory was valid for
 
bodies of arbitrary shape, they did not explain how to actually obtain the
 
diffraction transfer matrices for bodies which did not have an axisymmetric
 
geometry. This step was performed by [[goo90]] who came up with an
 
explicit method to calculate the diffraction transfer matrices for bodies of
 
arbitrary geometry in the case of finite depth. Utilising a Green's
 
function they used the standard
 
method of transforming the single diffraction boundary-value problem
 
to an integral equation for the source strength distribution function
 
over the immersed surface of the body.
 
However, the representation of the scattered potential which
 
is obtained using this method is not automatically given in the
 
cylindrical eigenfunction
 
expansion. To obtain such cylindrical eigenfunction expansions of the
 
potential [[goo90]] used the representation of the free surface
 
finite depth Green's function given by [[black75]] and
 
[[fenton78]].  \citeauthor{black75} and
 
\citeauthor{fenton78}'s representation of the Green's function was based
 
on applying Graf's addition theorem to the eigenfunction
 
representation of the free surface finite depth Green's function given
 
by [[john2]]. Their representation allowed the scattered potential to be
 
represented in the eigenfunction expansion with the cylindrical
 
coordinate system fixed at the point of the water surface above the
 
mean centre position of the body.
 
 
It should be noted that, instead of using the source strength distribution
 
function, it is also possible to consider an integral equation for the
 
total potential and calculate the elements of the diffraction transfer
 
matrix from the solution of this integral equation.
 
An outline of this method for water of finite
 
depth is given by [[kashiwagi00]]. We will present
 
here a derivation of the diffraction transfer matrices for the case
 
infinite depth based on a solution
 
for the source strength distribution function. However,
 
an equivalent derivation would be possible based on the solution
 
for the total velocity potential.
 
 
To calculate the diffraction transfer matrix in infinite depth, we
 
require the representation of the [[Infinite Depth]], [[Free-Surface Green Function]]
 
in cylindrical eigenfunctions,
 
<center><math> (green_inf)\begin{matrix}
 
G(r,\theta,z;s,\varphi,c) =& \frac{\mathrm{i}\alpha}{2} \,  \mathrm{e}^{\alpha (z+c)}
 
\sum_{\nu=-\infty}^{\infty} H_\nu^{(1)}(\alpha r) J_\nu(\alpha s) \mathrm{e}^{\mathrm{i}\nu
 
(\theta - \varphi)} \\
 
+& \frac{1}{\pi^2} \int\limits_0^{\infty}
 
\psi(z,\eta) \frac{\eta^2}{\eta^2+\alpha^2} \psi(c,\eta)
 
\sum_{\nu=-\infty}^{\infty} K_\nu(\eta r) I_\nu(\eta s) \mathrm{e}^{\mathrm{i}\nu
 
(\theta - \varphi)} \mathrm{d}\eta,
 
\end{matrix}
 
</math></center>
 
<math>r > s</math>, given by [[Peter and Meylan 2004]].
 
 
We assume that we have represented the scattered potential in terms of
 
the source strength distribution <math>\varsigma^j</math> so that the scattered
 
potential can be written as
 
<center><math> (int_eq_1)
 
\phi_j^\mathrm{S}(\mathbf{y}) = \int\limits_{\Gamma_j} G
 
(\mathbf{y},\mathbf{\zeta}) \, \varsigma^j (\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta}, \quad \mathbf{y} \in D,
 
</math></center>
 
where <math>D</math> is the volume occupied by the water and <math>\Gamma_j</math> is the
 
immersed surface of body <math>\Delta_j</math>. The source strength distribution
 
function <math>\varsigma^j</math> can be found by solving an
 
integral equation. The integral equation is described in
 
[[Weh_Lait]] and numerical methods for its solution are outlined in
 
[[Sarp_Isa]].
 
Substituting the eigenfunction expansion of the Green's function
 
(green_inf) into  (int_eq_1), the scattered potential can
 
be written as
 
<center><math>\begin{matrix}
 
&\phi_j^\mathrm{S}(r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\infty}^{\infty} \bigg[ \frac{\mathrm{i}\alpha}{2}
 
\int\limits_{\Gamma_j} \mathrm{e}^{\alpha c} J_\nu(\alpha s) \mathrm{e}^{-\mathrm{i}\nu
 
\varphi} \varsigma^j(\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta} \bigg] H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}\\
 
& \, + \int\limits_{0}^{\infty} \psi(z,\eta) \sum_{\nu = -
 
\infty}^{\infty}  \bigg[ \frac{1}{\pi^2} \frac{\eta^2
 
}{\eta^2 + \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_\nu(\eta s)
 
\mathrm{e}^{-\mathrm{i}\nu \varphi} \varsigma^j({\mathbf{\zeta}})
 
\mathrm{d}\sigma_{\mathbf{\zeta}} \bigg] K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta,
 
\end{matrix}</math></center>
 
where
 
<math>\mathbf{\zeta}=(s,\varphi,c)</math> and <math>r>s</math>.
 
This restriction implies that the eigenfunction expansion is only valid
 
outside the escribed cylinder of the body.
 
 
The columns of the diffraction transfer matrix are the coefficients of
 
the eigenfunction expansion of the scattered wavefield due to the
 
different incident modes of unit-amplitude. The elements of the
 
diffraction transfer matrix of a body of arbitrary shape are therefore given by
 
<center><math> (B_elem)
 
({\mathbf B}_j)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
 
\mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p \varphi} \varsigma_q^j(\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta}
 
</math></center>
 
and
 
<center><math>
 
({\mathbf B}_j)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
 
\alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
 
\varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
 
</math></center>
 
for the propagating and the decaying modes respectively, where
 
<math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
 
due to an incident potential of mode <math>q</math> of the form
 
<center><math> (test_modesinf)
 
\phi_q^{\mathrm{I}}(s,\varphi,c) =  \mathrm{e}^{\alpha c} H_q^{(1)} (\alpha
 
s) \mathrm{e}^{\mathrm{i}q \varphi}
 
</math></center>
 
for the propagating modes, and
 
<center><math>
 
\phi_q^{\mathrm{I}}(s,\varphi,c) = \psi(c,\eta) K_q (\eta s) \mathrm{e}^{\mathrm{i}q \varphi}
 
</math></center>
 
for the decaying modes.
 
  
===The diffraction transfer matrix of rotated bodies===
 
  
For a non-axisymmetric body, a rotation about the mean
 
centre position in the <math>(x,y)</math>-plane will result in a
 
different diffraction transfer matrix. We will show how the
 
diffraction transfer matrix of a body rotated by an angle <math>\beta</math> can
 
be easily calculated from the diffraction transfer matrix of the
 
non-rotated body. The rotation of the body influences the form of the
 
elements of the diffraction transfer matrices in two ways. Firstly, the
 
angular dependence in the integral over the immersed surface of the
 
body is altered and, secondly, the source strength distribution
 
function is different if the body is rotated. However, the source
 
strength distribution function of the rotated body can be obtained by
 
calculating the response of the non-rotated body due to rotated
 
incident potentials. It will be shown that the additional angular
 
dependence can be easily factored out of the elements of the
 
diffraction transfer matrix.
 
  
The additional angular dependence caused by the rotation of the
 
incident potential can be factored out of the normal derivative of the
 
incident potential such that
 
<center><math>
 
\frac{\partial \phi_{q\beta}^{\mathrm{I}}}{\partial n} =
 
\frac{\partial \phi_{q}^{\mathrm{I}}}{\partial n}
 
\mathrm{e}^{\mathrm{i}q \beta},
 
</math></center>
 
where <math>\phi_{q\beta}^{\mathrm{I}}</math> is the rotated incident potential.
 
Since the integral equation for the determination of the source
 
strength distribution function is linear, the source strength
 
distribution function due to the rotated incident potential is thus just
 
given by
 
<center><math>
 
\varsigma_{q\beta}^j = \varsigma_q^j \, \mathrm{e}^{\mathrm{i}q \beta}.
 
</math></center>
 
This is also the source strength distribution function of the rotated
 
body due to the standard incident modes.
 
  
The elements of the diffraction transfer matrix <math>\mathbf{B}_j</math> are
 
given by equations  (B_elem). Keeping in mind that the body is
 
rotated by the angle <math>\beta</math>, the elements of the diffraction transfer
 
matrix of the rotated body are given by
 
<center><math> (B_elemrot)
 
(\mathbf{B}_j^\beta)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
 
\mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p (\varphi+\beta)}
 
\varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
 
</math></center>
 
and
 
<center><math>
 
(\mathbf{B}_j^\beta)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
 
\alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
 
(\varphi+\beta)} \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
 
</math></center>
 
for the propagating and decaying modes respectively.
 
 
Thus the additional angular dependence caused by the rotation of
 
the body can be factored out of the elements of the diffraction
 
transfer matrix. The elements of the diffraction transfer matrix
 
corresponding to the body rotated by the angle <math>\beta</math>,
 
<math>\mathbf{B}_j^\beta</math>, are given by
 
<center><math> (B_rot)
 
(\mathbf{B}_j^\beta)_{pq} = (\mathbf{B}_j)_{pq} \, \mathrm{e}^{\mathrm{i}(q-p) \beta}.
 
</math></center>
 
As before, <math>(\mathbf{B})_{pq}</math> is understood to be the element of
 
<math>\mathbf{B}</math> which corresponds to the coefficient of the <math>p</math>th scattered
 
mode due to a unit-amplitude incident wave of mode <math>q</math>. Equation (B_rot) applies to
 
propagating and decaying modes likewise.
 
 
==Representation of the ambient wavefield in the eigenfunction representation==
 
In Cartesian coordinates centred at the origin, the ambient wavefield is
 
given by
 
<center><math>
 
\phi^{\mathrm{In}}(x,y,z) = A \frac{g}{\omega} \, \mathrm{e}^{\mathrm{i}\alpha (x
 
\cos \chi + y \sin \chi)+ \alpha z},
 
</math></center>
 
where <math>A</math> is the amplitude (in displacement) and <math>\chi</math> is the
 
angle between the <math>x</math>-axis and the direction in which the wavefield travels.
 
The interaction theory requires that the ambient wavefield, which is
 
incident upon
 
all bodies, is represented in the eigenfunction expansion of an
 
incoming wave in the local coordinates of the body. The ambient wave
 
can be represented in an eigenfunction expansion centred at the origin
 
as
 
<center><math>
 
\phi^{\mathrm{In}}(x,y,z) = A \frac{g}{\omega} \mathrm{e}^{\alpha z}
 
\sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 - \theta + \chi)}
 
J_\mu(\alpha r)
 
</math></center>
 
\cite[p. 169]{linton01}.
 
Since the local coordinates of the bodies are centred at their mean
 
centre positions <math>O_l = (O_x^l,O_y^l)</math>, a phase factor has to be defined
 
which accounts for the position from the origin. Including this phase
 
factor the ambient wavefield at the <math>l</math>th body is given
 
by
 
<center><math>
 
\phi^{\mathrm{In}}(r_l,\theta_l,z) = A \frac{g}{\omega} \, e^{\mathrm{i}\alpha (O_x^l
 
\cos \chi + O_x^l \sin \chi)} \, \mathrm{e}^{\alpha z}
 
\sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 -  \chi)}
 
J_\mu(\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}.
 
</math></center>
 
 
==Solving the resulting system of equations==
 
After the coefficient vector of the ambient incident wavefield, the
 
diffraction transfer matrices and the coordinate
 
transformation matrices have been calculated, the system of
 
equations  (eq_B_inf),
 
has to be solved. This system can be represented by the following
 
matrix equation,
 
<center><math>
 
\left[ \begin{matrix}
 
{\mathbf a}_1\\ {\mathbf a}_2\\ \\ \vdots \\ \\ {\mathbf a}_N
 
\end{matrix} \right]
 
= \left[ \begin{matrix}
 
{{\mathbf B}}_1 {\mathbf d}_1^\mathrm{In}\\ {{\mathbf B}}_2 {\mathbf
 
d}_2^\mathrm{In}\\ \\ \vdots \\ \\ {{\mathbf B}}_N {\mathbf d}_N^\mathrm{In}
 
\end{matrix} \right]
 
+
 
\left[ \begin{matrix}
 
\mathbf{0} & {{\mathbf B}}_1 {\mathbf T}_{21} & {{\mathbf B}}_1
 
{\mathbf T}_{31} & \dots & {{\mathbf B}}_1 {\mathbf T}_{N1}\\
 
{{\mathbf B}}_2  {\mathbf T}_{12} & \mathbf{0} & {{\mathbf B}}_2
 
{\mathbf T}_{32} & \dots & {{\mathbf B}}_2  {\mathbf T}_{N2}\\
 
& & \mathbf{0} & &\\
 
\vdots & & & \ddots & \vdots\\
 
& & & & \\
 
{{\mathbf B}}_N  {\mathbf T}_{1N} & & \dots & 
 
& \mathbf{0}
 
\end{matrix} \right]
 
\left[ \begin{matrix}
 
{\mathbf a}_1\\ {\mathbf a}_2\\ \\ \vdots \\ \\ {\mathbf a}_N
 
\end{matrix} \right],
 
</math></center>
 
where <math>\mathbf{0}</math> denotes the zero-matrix which is of the same
 
dimension as <math>{{\mathbf B}}_j</math>, say <math>n</math>. This matrix equation can be
 
easily transformed into a classical <math>(N \, n)</math>-dimensional linear system of
 
equations.
 
  
[[Category:Linear Water Wave Theory]
+
[[Category:Interaction Theory]]

Latest revision as of 09:29, 20 October 2009


Introduction

Kagemoto and Yue Interaction Theory applies in Finite Depth water. The theory was extended by Peter and Meylan 2004 to Infinite Depth water and we present this theory here.

Eigenfunction expansion of the potential

The scattered potential of body [math]\displaystyle{ \Delta_j }[/math] can be expanded using the Cylindrical Eigenfunction Expansion for Infinite Depth,

[math]\displaystyle{ \phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \big) \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta, }[/math]

where the coefficients [math]\displaystyle{ A_{0 \nu}^j }[/math] for the propagating modes are discrete and the coefficients [math]\displaystyle{ A_{\nu}^j (\cdot) }[/math] for the decaying modes are functions. [math]\displaystyle{ H_\nu^{(1)} }[/math] and [math]\displaystyle{ K_\nu }[/math] are the Hankel function of the first kind and the modified Bessel function of the second kind respectively, both of order [math]\displaystyle{ \nu }[/math] (: Bessel functions). The incident potential upon body [math]\displaystyle{ \Delta_j }[/math] can be expanded in cylindrical eigenfunctions,

[math]\displaystyle{ \phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = - \infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j} + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \big) \sum_{\mu = - \infty}^{\infty} D_{\mu}^j (\eta) I_\mu (\eta r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j} \mathrm{d}\eta, }[/math]

where the coefficients [math]\displaystyle{ D_{0 \mu}^j }[/math] for the propagating modes are discrete and the coefficients [math]\displaystyle{ D_{\mu}^j (\cdot) }[/math] for the decaying modes are functions. [math]\displaystyle{ J_\mu }[/math] and [math]\displaystyle{ I_\mu }[/math] are the Bessel function and the modified Bessel function respectively, both of the first kind and order [math]\displaystyle{ \mu }[/math]. To simplify the notation, from now on [math]\displaystyle{ \psi(z,\eta) }[/math] will denote the vertical eigenfunctions corresponding to the decaying modes,

[math]\displaystyle{ \psi(z,\eta) = \cos \eta z + \alpha / \eta \, \sin \eta z. }[/math]

The interaction in water of infinite depth

The scattered potential [math]\displaystyle{ \phi_j^{\mathrm{S}} }[/math] of body [math]\displaystyle{ \Delta_j }[/math] needs to be represented in terms of the incident potential [math]\displaystyle{ \phi_l^{\mathrm{I}} }[/math] upon [math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ j \neq l }[/math]. This can be accomplished by using Graf's Addition Theorem to obtain,

[math]\displaystyle{ H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \, J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]
[math]\displaystyle{ K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math]. This limitation only requires that the escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does not enclose any other origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]). However, the expansion of the scattered and incident potential in cylindrical eigenfunctions is only valid outside the escribed cylinder of each body. Therefore the condition that the escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does not enclose any other origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]) is superseded by the more rigorous restriction that the escribed cylinder of each body may not contain any other body. Making use of the equations (transf) the scattered potential of [math]\displaystyle{ \Delta_j }[/math] can be expressed in terms of the incident potential upon [math]\displaystyle{ \Delta_l }[/math],

[math]\displaystyle{ \phi_j^{\mathrm{S}} (r_l,\theta_l,z) = \mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j \sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl}) J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} }[/math]
[math]\displaystyle{ \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty} (-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta }[/math]
[math]\displaystyle{ = \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i} (\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} }[/math]
[math]\displaystyle{ + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta. }[/math]

The ambient incident wavefield [math]\displaystyle{ \phi^{\mathrm{In}} }[/math] can also be expanded in the eigenfunctions corresponding to the incident wavefield upon [math]\displaystyle{ \Delta_l }[/math] (cf. the example in Cylindrical Eigenfunction Expansion). Let [math]\displaystyle{ D_{l0\mu}^{\mathrm{In}} }[/math] denote the coefficients of this ambient incident wavefield corresponding to the propagating modes and [math]\displaystyle{ D_{l\mu}^{\mathrm{In}} (\cdot) }[/math] denote the coefficients functions corresponding to the decaying modes (which are identically zero) of the incoming eigenfunction expansion for [math]\displaystyle{ \Delta_l }[/math]. The total incident wavefield upon body [math]\displaystyle{ \Delta_j }[/math] can now be expressed as

[math]\displaystyle{ \phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) + \sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}} (r_l,\theta_l,z) }[/math]
[math]\displaystyle{ = \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i} (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} }[/math]
[math]\displaystyle{ + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty} \Big[ D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta. }[/math]

The coefficients of the total incident potential upon [math]\displaystyle{ \Delta_l }[/math] are therefore given by

[math]\displaystyle{ D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}} }[/math]
[math]\displaystyle{ D_{\mu}^l(\eta) = D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}. }[/math]

In general, it is possible to relate the total incident and scattered partial waves for any body through the diffraction characteristics of that body in isolation. The Diffraction Transfer Matrix for Infinite Depth (strictly an operator) [math]\displaystyle{ B_l }[/math] relates the coefficients of the incident and scattered partial waves, such that

[math]\displaystyle{ A_l = B_l (D_l), \quad l=1, \ldots, N, }[/math]

where [math]\displaystyle{ A_l }[/math] are the scattered modes due to the incident modes [math]\displaystyle{ D_l }[/math]. Fro the Finite Depth case, [math]\displaystyle{ B_l }[/math] is an infinite dimensional matrix. For Infinite Depth [math]\displaystyle{ B_l }[/math] is the kernel of an integral operator. For the propagating and the decaying modes respectively, the scattered potential can be related by the Diffraction Transfer Matrix for Infinite Depth in the following ways,

[math]\displaystyle{ A_{0\nu}^l = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi, }[/math]
[math]\displaystyle{ A_\nu^l (\eta) = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi) D_{\mu}^l (\xi) \mathrm{d}\xi. }[/math]

The superscripts [math]\displaystyle{ \mathrm{p} }[/math] and [math]\displaystyle{ \mathrm{d} }[/math] are used to distinguish between propagating and decaying modes, the first superscript denotes the kind of scattered mode, the second one the kind of incident mode. If the [Diffraction Transfer Matrix for Infinite Depth]] are substituted we obtain the required equations to determine the coefficients and coefficient functions of the scattered wavefields of all bodies,

[math]\displaystyle{ A_{0n}^l = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp} \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}} \Big] }[/math]
[math]\displaystyle{ + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi, }[/math]
[math]\displaystyle{ A_n^l (\eta) = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dp} (\eta) \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}}\Big] }[/math]
[math]\displaystyle{ + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi) \Big[ D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi, }[/math]

[math]\displaystyle{ n \in \mathbb{Z},\, l = 1, \ldots, N }[/math]. It has to be noted that all equations are coupled so that it is necessary to solve for all scattered coefficients and coefficient functions simultaneously.

For numerical calculations, the infinite sums have to be truncated and the integrals must be discretised. Implying a suitable truncation, the four different diffraction transfer operators can be represented by matrices which can be assembled in a big matrix [math]\displaystyle{ \mathbf{B}_l }[/math],

[math]\displaystyle{ \mathbf{B}_l = \left[ \begin{matrix} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\ \mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}} \end{matrix} \right], }[/math]

the infinite depth diffraction transfer matrix. Truncating the coefficients accordingly, defining [math]\displaystyle{ {\mathbf a}^l }[/math] to be the vector of the coefficients of the scattered potential of body [math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ \mathbf{d}_l^{\mathrm{In}} }[/math] to be the vector of coefficients of the ambient wavefield, and making use of a coordinate transformation matrix [math]\displaystyle{ {\mathbf T}_{lj} }[/math] given by

[math]\displaystyle{ ({\mathbf T}_{lj})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q) \vartheta_{jl}} }[/math]

for the propagating modes, and

[math]\displaystyle{ ({\mathbf T}_{lj})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i} (p-q) \vartheta_{jl}} }[/math]

for the decaying modes, a linear system of equations for the unknown coefficients follows

[math]\displaystyle{ {\mathbf a}_l = {\mathbf {B}}_l \Big( {\mathbf d}_l^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} {\mathbf T}_{lj} \, {\mathbf a}_j \Big), \quad l=1, \ldots, N. }[/math]

The matrix [math]\displaystyle{ {\mathbf \hat{B}}_l }[/math] denotes the infinite depth diffraction transfer matrix [math]\displaystyle{ {\mathbf B}_l }[/math] in which the elements associated with decaying scattered modes have been multiplied with the appropriate integration weights depending on the discretisation of the continuous variable.