Difference between revisions of "Kagemoto and Yue Interaction Theory for Infinite Depth"

From WikiWaves
Jump to navigationJump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Introduction=
+
{{complete pages}}
 +
 
 +
==Introduction==
  
 
[[Kagemoto and Yue Interaction Theory]] applies in [[Finite Depth]] water.
 
[[Kagemoto and Yue Interaction Theory]] applies in [[Finite Depth]] water.
Line 5: Line 7:
 
and we present this theory here.  
 
and we present this theory here.  
  
=Eigenfunction expansion of the potential=
+
==Eigenfunction expansion of the potential==
  
The scattered potential of body <math>\Delta_j</math> can be expanded in
+
The scattered potential of body <math>\Delta_j</math> can be expanded using
cylindrical eigenfunctions,
+
the [[Cylindrical Eigenfunction Expansion]] for [[Infinite Depth]],
<center><math> (basisrep_out)
+
<center><math>  
 
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
 
\infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
Line 22: Line 24:
 
modes are functions. <math>H_\nu^{(1)}</math> and <math>K_\nu</math> are the Hankel function
 
modes are functions. <math>H_\nu^{(1)}</math> and <math>K_\nu</math> are the Hankel function
 
of the first kind and the modified Bessel function of the second kind
 
of the first kind and the modified Bessel function of the second kind
respectively, both of order <math>\nu</math> as defined in [[Abramowitz and Stegun 1964]].  
+
respectively, both of order <math>\nu</math>  
 +
([http://en.wikipedia.org/wiki/Bessel_function : Bessel functions]).  
 
The incident potential upon body <math>\Delta_j</math> can be expanded in
 
The incident potential upon body <math>\Delta_j</math> can be expanded in
 
cylindrical eigenfunctions,  
 
cylindrical eigenfunctions,  
<center><math> (basisrep_in)
+
<center><math>  
 
\phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
 
\phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
 
\infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
 
\infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
Line 44: Line 47:
 
</math></center>
 
</math></center>
  
=The interaction in water of infinite depth=
+
==The interaction in water of infinite depth==
  
 
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
 
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
upon <math>\Delta_l</math>, <math>j \neq l</math>. From figure
+
upon <math>\Delta_l</math>, <math>j \neq l</math>. This can be accomplished by using
(fig:floe_tri) we can see that this can be accomplished by using
+
[[Graf's Addition Theorem]] to obtain,  
Graf's addition theorem for Bessel functions given in
+
<center><math>  
[[Abramowitz and Stegun 1964]],  
+
H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} =
<center><math> (transf)
 
\begin{matrix} (transf_h)
 
H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &=
 
 
\sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
 
\sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
\quad j \neq l,\\
+
\quad j \neq l,
(transf_k)
+
</math></center>
K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &= \sum_{\mu = -
+
<center><math>
 +
K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = -
 
\infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
\infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
 
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
\end{matrix}
 
 
</math></center>
 
</math></center>
 
which is valid provided that <math>r_l < R_{jl}</math>. This limitation
 
which is valid provided that <math>r_l < R_{jl}</math>. This limitation
Line 76: Line 76:
 
the scattered potential of <math>\Delta_j</math> can be expressed in terms of the
 
the scattered potential of <math>\Delta_j</math> can be expressed in terms of the
 
incident potential upon <math>\Delta_l</math>,
 
incident potential upon <math>\Delta_l</math>,
<center><math>\begin{matrix}
+
<center><math>
\phi_j^{\mathrm{S}} (r_l,\theta_l,z) &=  
+
\phi_j^{\mathrm{S}} (r_l,\theta_l,z) =  
 
\mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j  
 
\mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j  
 
\sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
 
\sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
\vartheta_{jl}}\\
+
\vartheta_{jl}}
& \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
+
</math></center>
 +
<center><math>
 +
\quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
 
\infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
 
\infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
 
(-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
 
(-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
\theta_l}  \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta\\
+
\theta_l}  \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
+
</math></center>
 +
<center><math>
 +
= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
 
\infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
 
\infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
(\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
+
(\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
+ \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
 
  \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
 
  \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
 
(\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
(\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
 
\vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.  
 
\vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.  
\end{matrix}</math></center>
+
</math></center>
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
 
expanded in the eigenfunctions corresponding to the incident wavefield upon
 
expanded in the eigenfunctions corresponding to the incident wavefield upon
Line 102: Line 108:
 
the incoming eigenfunction expansion for <math>\Delta_l</math>. The total
 
the incoming eigenfunction expansion for <math>\Delta_l</math>. The total
 
incident wavefield upon body <math>\Delta_j</math> can now be expressed as  
 
incident wavefield upon body <math>\Delta_j</math> can now be expressed as  
<center><math>\begin{matrix}
+
<center><math>
&\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
+
\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
 
\sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
 
\sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
(r_l,\theta_l,z)\\
+
(r_l,\theta_l,z)
&= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
+
</math></center>
 +
<center><math>
 +
= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
 
  D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
  D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
  (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
+
  (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}
& + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
+
</math></center>
 +
<center><math>
 +
+ \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
 
-\infty}^{\infty} \Big[  D_{l\mu}^{\mathrm{In}}(\eta) +
 
-\infty}^{\infty} \Big[  D_{l\mu}^{\mathrm{In}}(\eta) +
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
Line 117: Line 127:
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
 
\mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
 
\mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
\end{matrix}</math></center>
+
</math></center>
 
The coefficients of the total incident potential upon <math>\Delta_l</math> are
 
The coefficients of the total incident potential upon <math>\Delta_l</math> are
 
therefore given by
 
therefore given by
<center><math> (inc_coeff)
+
<center><math>
 
D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}  
 
D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}  
 
+ \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
+ \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
Line 136: Line 146:
 
In general, it is possible to relate the total incident and scattered
 
In general, it is possible to relate the total incident and scattered
 
partial waves for any body through the diffraction characteristics of
 
partial waves for any body through the diffraction characteristics of
that body in isolation. There exist diffraction transfer operators
+
that body in isolation. The [[Diffraction Transfer Matrix for Infinite Depth]]
<math>B_l</math> that relate the coefficients of the incident and scattered
+
(strictly an operator)
 +
<math>B_l</math> relates the coefficients of the incident and scattered
 
partial waves, such that
 
partial waves, such that
<center><math> (eq_B)
+
<center><math>  
 
A_l = B_l (D_l), \quad l=1, \ldots, N,
 
A_l = B_l (D_l), \quad l=1, \ldots, N,
 
</math></center>
 
</math></center>
 
where <math>A_l</math> are the scattered modes due to the incident modes <math>D_l</math>.
 
where <math>A_l</math> are the scattered modes due to the incident modes <math>D_l</math>.
In the case of a countable number of modes, (i.e. when
+
Fro the [[Finite Depth]] case, <math>B_l</math> is an infinite dimensional matrix. For
the depth is finite), <math>B_l</math> is an infinite dimensional matrix. When
+
[[Infinite Depth]] <math>B_l</math> is the kernel of an integral operator.  
the modes are functions of a continuous variable (i.e. infinite
 
depth), <math>B_l</math> is the kernel of an integral operator.  
 
 
For the propagating and the decaying modes respectively, the scattered
 
For the propagating and the decaying modes respectively, the scattered
potential can be related by diffraction transfer operators acting in the
+
potential can be related by the [[Diffraction Transfer Matrix for Infinite Depth]] in the
 
following ways,
 
following ways,
<center><math> (diff_op)
+
<center><math>  
\begin{matrix}
+
A_{0\nu}^l = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
A_{0\nu}^l &= \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
 
 
+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
 
+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,\\
+
B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,
A_\nu^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
A_\nu^l (\eta) = \sum_{\mu = -\infty}^{\infty}
 
B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
 
B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
 
\sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
 
\sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
 
D_{\mu}^l (\xi) \mathrm{d}\xi.
 
D_{\mu}^l (\xi) \mathrm{d}\xi.
\end{matrix}
 
 
</math></center>  
 
</math></center>  
 
The superscripts <math>\mathrm{p}</math> and <math>\mathrm{d}</math> are used to distinguish
 
The superscripts <math>\mathrm{p}</math> and <math>\mathrm{d}</math> are used to distinguish
 
between propagating and decaying modes, the first superscript denotes the kind
 
between propagating and decaying modes, the first superscript denotes the kind
 
of scattered mode, the second one the kind of incident mode.
 
of scattered mode, the second one the kind of incident mode.
If the diffraction transfer operators are known (their calculation
+
If the [Diffraction Transfer Matrix for Infinite Depth]] are substituted we
will be discussed later), the substitution of
+
obtain the
equations  (inc_coeff) into equations  (diff_op) give the
 
 
required equations to determine the coefficients and coefficient
 
required equations to determine the coefficients and coefficient
 
functions of the scattered wavefields of all bodies,
 
functions of the scattered wavefields of all bodies,
<center><math> (eq_op)
+
<center><math>  
\begin{matrix}
+
A_{0n}^l = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}  
A_{0n}^l =& \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}  
 
 
\Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
  (\nu - \mu) \vartheta_{jl}} \Big]\\
+
  (\nu - \mu) \vartheta_{jl}} \Big]
  &+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
  + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
 
B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
 
B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
\sum_{j=1,j \neq  l}^{N} \sum_{\nu =
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,\\
+
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,
A_n^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
+
</math></center>
 +
<center><math>
 +
A_n^l (\eta) = \sum_{\mu = -\infty}^{\infty}
 
B_{ln\mu}^\mathrm{dp} (\eta) \Big[
 
B_{ln\mu}^\mathrm{dp} (\eta) \Big[
 
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j  
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
\neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
 
  H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
  (\nu - \mu) \vartheta_{jl}}\Big]\\
+
  (\nu - \mu) \vartheta_{jl}}\Big]
& + \int\limits_{0}^{\infty}
+
</math></center>
 +
<center><math>
 +
+ \int\limits_{0}^{\infty}
 
\sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
 
\sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
 
\Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
 
\Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
Line 193: Line 206:
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
-\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu}  (\eta
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
 
R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
\end{matrix}
 
 
</math></center>
 
</math></center>
<math>n \in \mathit{Z},\, l = 1, \ldots, N</math>. It has to be noted that all
+
<math>n \in \mathbb{Z},\, l = 1, \ldots, N</math>. It has to be noted that all
 
equations are coupled so that it is necessary to solve for all
 
equations are coupled so that it is necessary to solve for all
 
scattered coefficients and coefficient functions simultaneously.  
 
scattered coefficients and coefficient functions simultaneously.  
Line 205: Line 217:
 
<center><math>
 
<center><math>
 
\mathbf{B}_l = \left[  
 
\mathbf{B}_l = \left[  
\begin{matrix}{cc} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
+
\begin{matrix} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
 
\mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
 
\mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
 
\end{matrix} \right],
 
\end{matrix} \right],
Line 214: Line 226:
 
<math>\Delta_l</math>, <math>\mathbf{d}_l^{\mathrm{In}}</math> to be the vector of
 
<math>\Delta_l</math>, <math>\mathbf{d}_l^{\mathrm{In}}</math> to be the vector of
 
coefficients of the ambient wavefield, and making use of a coordinate
 
coefficients of the ambient wavefield, and making use of a coordinate
transformation matrix <math>{\mathbf T}_{jl}</math> given by
+
transformation matrix <math>{\mathbf T}_{lj}</math> given by
<center><math> (T_elem_deep)
+
<center><math>  
({\mathbf T}_{jl})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
+
({\mathbf T}_{lj})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
 
\vartheta_{jl}}
 
\vartheta_{jl}}
 
</math></center>
 
</math></center>
 
for the propagating modes, and
 
for the propagating modes, and
 
<center><math>
 
<center><math>
({\mathbf T}_{jl})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
+
({\mathbf T}_{lj})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
 
(p-q) \vartheta_{jl}}
 
(p-q) \vartheta_{jl}}
 
</math></center>
 
</math></center>
 
for the decaying modes, a linear system of equations
 
for the decaying modes, a linear system of equations
for the unknown coefficients follows from equations  (eq_op),
+
for the unknown coefficients follows
<center><math> (eq_Binf)
+
<center><math>  
 
{\mathbf a}_l =  
 
{\mathbf a}_l =  
 
{\mathbf {B}}_l \Big(  
 
{\mathbf {B}}_l \Big(  
 
{\mathbf d}_l^{\mathrm{In}} +
 
{\mathbf d}_l^{\mathrm{In}} +
\sum_{j=1,j \neq l}^{N} trans {\mathbf T}_{jl} \,
+
\sum_{j=1,j \neq l}^{N} {\mathbf T}_{lj} \,
  {\mathbf a}_j \Big), \quad  l=1, \ldots, N,
+
  {\mathbf a}_j \Big), \quad  l=1, \ldots, N.
 
</math></center>
 
</math></center>
where the left superscript <math>\mathrm{t}</math> indicates transposition.
 
 
The matrix <math>{\mathbf \hat{B}}_l</math> denotes the infinite depth diffraction
 
The matrix <math>{\mathbf \hat{B}}_l</math> denotes the infinite depth diffraction
 
transfer matrix <math>{\mathbf B}_l</math> in which the elements associated with
 
transfer matrix <math>{\mathbf B}_l</math> in which the elements associated with
Line 239: Line 250:
 
integration weights depending on the discretisation of the continuous variable.
 
integration weights depending on the discretisation of the continuous variable.
  
=Calculation of the diffraction transfer matrix for bodies of arbitrary geometry=
 
  
To calculate the diffraction transfer matrix in infinite depth, we
 
require the representation of the [[Infinite Depth]], [[Free-Surface Green Function]]
 
in cylindrical eigenfunctions,
 
<center><math> (green_inf)\begin{matrix}
 
G(r,\theta,z;s,\varphi,c) =& \frac{\mathrm{i}\alpha}{2} \,  \mathrm{e}^{\alpha (z+c)}
 
\sum_{\nu=-\infty}^{\infty} H_\nu^{(1)}(\alpha r) J_\nu(\alpha s) \mathrm{e}^{\mathrm{i}\nu
 
(\theta - \varphi)} \\
 
+& \frac{1}{\pi^2} \int\limits_0^{\infty}
 
\psi(z,\eta) \frac{\eta^2}{\eta^2+\alpha^2} \psi(c,\eta)
 
\sum_{\nu=-\infty}^{\infty} K_\nu(\eta r) I_\nu(\eta s) \mathrm{e}^{\mathrm{i}\nu
 
(\theta - \varphi)} \mathrm{d}\eta,
 
\end{matrix}
 
</math></center>
 
<math>r > s</math>, given by [[Peter and Meylan 2004b]].
 
 
We assume that we have represented the scattered potential in terms of
 
the source strength distribution <math>\varsigma^j</math> so that the scattered
 
potential can be written as
 
<center><math> (int_eq_1)
 
\phi_j^\mathrm{S}(\mathbf{y}) = \int\limits_{\Gamma_j} G
 
(\mathbf{y},\mathbf{\zeta}) \, \varsigma^j (\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta}, \quad \mathbf{y} \in D,
 
</math></center>
 
where <math>D</math> is the volume occupied by the water and <math>\Gamma_j</math> is the
 
immersed surface of body <math>\Delta_j</math>. The source strength distribution
 
function <math>\varsigma^j</math> can be found by solving an
 
integral equation. The integral equation is described in
 
[[Weh_Lait]] and numerical methods for its solution are outlined in
 
[[Sarp_Isa]].
 
Substituting the eigenfunction expansion of the Green's function
 
(green_inf) into  (int_eq_1), the scattered potential can
 
be written as
 
<center><math>\begin{matrix}
 
&\phi_j^\mathrm{S}(r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
 
\infty}^{\infty} \bigg[ \frac{\mathrm{i}\alpha}{2}
 
\int\limits_{\Gamma_j} \mathrm{e}^{\alpha c} J_\nu(\alpha s) \mathrm{e}^{-\mathrm{i}\nu
 
\varphi} \varsigma^j(\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta} \bigg] H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}\\
 
& \, + \int\limits_{0}^{\infty} \psi(z,\eta) \sum_{\nu = -
 
\infty}^{\infty}  \bigg[ \frac{1}{\pi^2} \frac{\eta^2
 
}{\eta^2 + \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_\nu(\eta s)
 
\mathrm{e}^{-\mathrm{i}\nu \varphi} \varsigma^j({\mathbf{\zeta}})
 
\mathrm{d}\sigma_{\mathbf{\zeta}} \bigg] K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta,
 
\end{matrix}</math></center>
 
where
 
<math>\mathbf{\zeta}=(s,\varphi,c)</math> and <math>r>s</math>.
 
This restriction implies that the eigenfunction expansion is only valid
 
outside the escribed cylinder of the body.
 
 
The columns of the diffraction transfer matrix are the coefficients of
 
the eigenfunction expansion of the scattered wavefield due to the
 
different incident modes of unit-amplitude. The elements of the
 
diffraction transfer matrix of a body of arbitrary shape are therefore given by
 
<center><math> (B_elem)
 
({\mathbf B}_j)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
 
\mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p \varphi} \varsigma_q^j(\mathbf{\zeta})
 
\mathrm{d}\sigma_\mathbf{\zeta}
 
</math></center>
 
and
 
<center><math>
 
({\mathbf B}_j)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
 
\alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
 
\varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
 
</math></center>
 
for the propagating and the decaying modes respectively, where
 
<math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
 
due to an incident potential of mode <math>q</math> of the form
 
<center><math> (test_modesinf)
 
\phi_q^{\mathrm{I}}(s,\varphi,c) =  \mathrm{e}^{\alpha c} H_q^{(1)} (\alpha
 
s) \mathrm{e}^{\mathrm{i}q \varphi}
 
</math></center>
 
for the propagating modes, and
 
<center><math>
 
\phi_q^{\mathrm{I}}(s,\varphi,c) = \psi(c,\eta) K_q (\eta s) \mathrm{e}^{\mathrm{i}q \varphi}
 
</math></center>
 
for the decaying modes.
 
 
=The diffraction transfer matrix of rotated bodies=
 
  
For a non-axisymmetric body, a rotation about the mean
 
centre position in the <math>(x,y)</math>-plane will result in a
 
different diffraction transfer matrix. We will show how the
 
diffraction transfer matrix of a body rotated by an angle <math>\beta</math> can
 
be easily calculated from the diffraction transfer matrix of the
 
non-rotated body. The rotation of the body influences the form of the
 
elements of the diffraction transfer matrices in two ways. Firstly, the
 
angular dependence in the integral over the immersed surface of the
 
body is altered and, secondly, the source strength distribution
 
function is different if the body is rotated. However, the source
 
strength distribution function of the rotated body can be obtained by
 
calculating the response of the non-rotated body due to rotated
 
incident potentials. It will be shown that the additional angular
 
dependence can be easily factored out of the elements of the
 
diffraction transfer matrix.
 
 
The additional angular dependence caused by the rotation of the
 
incident potential can be factored out of the normal derivative of the
 
incident potential such that
 
<center><math>
 
\frac{\partial \phi_{q\beta}^{\mathrm{I}}}{\partial n} =
 
\frac{\partial \phi_{q}^{\mathrm{I}}}{\partial n}
 
\mathrm{e}^{\mathrm{i}q \beta},
 
</math></center>
 
where <math>\phi_{q\beta}^{\mathrm{I}}</math> is the rotated incident potential.
 
Since the integral equation for the determination of the source
 
strength distribution function is linear, the source strength
 
distribution function due to the rotated incident potential is thus just
 
given by
 
<center><math>
 
\varsigma_{q\beta}^j = \varsigma_q^j \, \mathrm{e}^{\mathrm{i}q \beta}.
 
</math></center>
 
This is also the source strength distribution function of the rotated
 
body due to the standard incident modes.
 
  
The elements of the diffraction transfer matrix <math>\mathbf{B}_j</math> are
 
given by equations  (B_elem). Keeping in mind that the body is
 
rotated by the angle <math>\beta</math>, the elements of the diffraction transfer
 
matrix of the rotated body are given by
 
<center><math> (B_elemrot)
 
(\mathbf{B}_j^\beta)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
 
\mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p (\varphi+\beta)}
 
\varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
 
</math></center>
 
and
 
<center><math>
 
(\mathbf{B}_j^\beta)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
 
\alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
 
(\varphi+\beta)} \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
 
</math></center>
 
for the propagating and decaying modes respectively.
 
 
Thus the additional angular dependence caused by the rotation of
 
the body can be factored out of the elements of the diffraction
 
transfer matrix. The elements of the diffraction transfer matrix
 
corresponding to the body rotated by the angle <math>\beta</math>,
 
<math>\mathbf{B}_j^\beta</math>, are given by
 
<center><math> (B_rot)
 
(\mathbf{B}_j^\beta)_{pq} = (\mathbf{B}_j)_{pq} \, \mathrm{e}^{\mathrm{i}(q-p) \beta}.
 
</math></center>
 
As before, <math>(\mathbf{B})_{pq}</math> is understood to be the element of
 
<math>\mathbf{B}</math> which corresponds to the coefficient of the <math>p</math>th scattered
 
mode due to a unit-amplitude incident wave of mode <math>q</math>. Equation (B_rot) applies to
 
propagating and decaying modes likewise.
 
  
  
[[Category:Linear Water-Wave Theory]]
+
[[Category:Interaction Theory]]

Latest revision as of 09:29, 20 October 2009


Introduction

Kagemoto and Yue Interaction Theory applies in Finite Depth water. The theory was extended by Peter and Meylan 2004 to Infinite Depth water and we present this theory here.

Eigenfunction expansion of the potential

The scattered potential of body [math]\displaystyle{ \Delta_j }[/math] can be expanded using the Cylindrical Eigenfunction Expansion for Infinite Depth,

[math]\displaystyle{ \phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \big) \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta, }[/math]

where the coefficients [math]\displaystyle{ A_{0 \nu}^j }[/math] for the propagating modes are discrete and the coefficients [math]\displaystyle{ A_{\nu}^j (\cdot) }[/math] for the decaying modes are functions. [math]\displaystyle{ H_\nu^{(1)} }[/math] and [math]\displaystyle{ K_\nu }[/math] are the Hankel function of the first kind and the modified Bessel function of the second kind respectively, both of order [math]\displaystyle{ \nu }[/math] (: Bessel functions). The incident potential upon body [math]\displaystyle{ \Delta_j }[/math] can be expanded in cylindrical eigenfunctions,

[math]\displaystyle{ \phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = - \infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j} + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \big) \sum_{\mu = - \infty}^{\infty} D_{\mu}^j (\eta) I_\mu (\eta r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j} \mathrm{d}\eta, }[/math]

where the coefficients [math]\displaystyle{ D_{0 \mu}^j }[/math] for the propagating modes are discrete and the coefficients [math]\displaystyle{ D_{\mu}^j (\cdot) }[/math] for the decaying modes are functions. [math]\displaystyle{ J_\mu }[/math] and [math]\displaystyle{ I_\mu }[/math] are the Bessel function and the modified Bessel function respectively, both of the first kind and order [math]\displaystyle{ \mu }[/math]. To simplify the notation, from now on [math]\displaystyle{ \psi(z,\eta) }[/math] will denote the vertical eigenfunctions corresponding to the decaying modes,

[math]\displaystyle{ \psi(z,\eta) = \cos \eta z + \alpha / \eta \, \sin \eta z. }[/math]

The interaction in water of infinite depth

The scattered potential [math]\displaystyle{ \phi_j^{\mathrm{S}} }[/math] of body [math]\displaystyle{ \Delta_j }[/math] needs to be represented in terms of the incident potential [math]\displaystyle{ \phi_l^{\mathrm{I}} }[/math] upon [math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ j \neq l }[/math]. This can be accomplished by using Graf's Addition Theorem to obtain,

[math]\displaystyle{ H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \, J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]
[math]\displaystyle{ K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math]. This limitation only requires that the escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does not enclose any other origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]). However, the expansion of the scattered and incident potential in cylindrical eigenfunctions is only valid outside the escribed cylinder of each body. Therefore the condition that the escribed cylinder of each body [math]\displaystyle{ \Delta_l }[/math] does not enclose any other origin [math]\displaystyle{ O_j }[/math] ([math]\displaystyle{ j \neq l }[/math]) is superseded by the more rigorous restriction that the escribed cylinder of each body may not contain any other body. Making use of the equations (transf) the scattered potential of [math]\displaystyle{ \Delta_j }[/math] can be expressed in terms of the incident potential upon [math]\displaystyle{ \Delta_l }[/math],

[math]\displaystyle{ \phi_j^{\mathrm{S}} (r_l,\theta_l,z) = \mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j \sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl}) J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} }[/math]
[math]\displaystyle{ \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty} (-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta }[/math]
[math]\displaystyle{ = \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i} (\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} }[/math]
[math]\displaystyle{ + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta. }[/math]

The ambient incident wavefield [math]\displaystyle{ \phi^{\mathrm{In}} }[/math] can also be expanded in the eigenfunctions corresponding to the incident wavefield upon [math]\displaystyle{ \Delta_l }[/math] (cf. the example in Cylindrical Eigenfunction Expansion). Let [math]\displaystyle{ D_{l0\mu}^{\mathrm{In}} }[/math] denote the coefficients of this ambient incident wavefield corresponding to the propagating modes and [math]\displaystyle{ D_{l\mu}^{\mathrm{In}} (\cdot) }[/math] denote the coefficients functions corresponding to the decaying modes (which are identically zero) of the incoming eigenfunction expansion for [math]\displaystyle{ \Delta_l }[/math]. The total incident wavefield upon body [math]\displaystyle{ \Delta_j }[/math] can now be expressed as

[math]\displaystyle{ \phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) + \sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}} (r_l,\theta_l,z) }[/math]
[math]\displaystyle{ = \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i} (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} }[/math]
[math]\displaystyle{ + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty} \Big[ D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta. }[/math]

The coefficients of the total incident potential upon [math]\displaystyle{ \Delta_l }[/math] are therefore given by

[math]\displaystyle{ D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}} }[/math]
[math]\displaystyle{ D_{\mu}^l(\eta) = D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}. }[/math]

In general, it is possible to relate the total incident and scattered partial waves for any body through the diffraction characteristics of that body in isolation. The Diffraction Transfer Matrix for Infinite Depth (strictly an operator) [math]\displaystyle{ B_l }[/math] relates the coefficients of the incident and scattered partial waves, such that

[math]\displaystyle{ A_l = B_l (D_l), \quad l=1, \ldots, N, }[/math]

where [math]\displaystyle{ A_l }[/math] are the scattered modes due to the incident modes [math]\displaystyle{ D_l }[/math]. Fro the Finite Depth case, [math]\displaystyle{ B_l }[/math] is an infinite dimensional matrix. For Infinite Depth [math]\displaystyle{ B_l }[/math] is the kernel of an integral operator. For the propagating and the decaying modes respectively, the scattered potential can be related by the Diffraction Transfer Matrix for Infinite Depth in the following ways,

[math]\displaystyle{ A_{0\nu}^l = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi, }[/math]
[math]\displaystyle{ A_\nu^l (\eta) = \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi) D_{\mu}^l (\xi) \mathrm{d}\xi. }[/math]

The superscripts [math]\displaystyle{ \mathrm{p} }[/math] and [math]\displaystyle{ \mathrm{d} }[/math] are used to distinguish between propagating and decaying modes, the first superscript denotes the kind of scattered mode, the second one the kind of incident mode. If the [Diffraction Transfer Matrix for Infinite Depth]] are substituted we obtain the required equations to determine the coefficients and coefficient functions of the scattered wavefields of all bodies,

[math]\displaystyle{ A_{0n}^l = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp} \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}} \Big] }[/math]
[math]\displaystyle{ + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi, }[/math]
[math]\displaystyle{ A_n^l (\eta) = \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dp} (\eta) \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i} (\nu - \mu) \vartheta_{jl}}\Big] }[/math]
[math]\displaystyle{ + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi) \Big[ D_{l\mu}^{\mathrm{In}}(\eta) + \sum_{j=1,j \neq l}^{N} \sum_{\nu = -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi, }[/math]

[math]\displaystyle{ n \in \mathbb{Z},\, l = 1, \ldots, N }[/math]. It has to be noted that all equations are coupled so that it is necessary to solve for all scattered coefficients and coefficient functions simultaneously.

For numerical calculations, the infinite sums have to be truncated and the integrals must be discretised. Implying a suitable truncation, the four different diffraction transfer operators can be represented by matrices which can be assembled in a big matrix [math]\displaystyle{ \mathbf{B}_l }[/math],

[math]\displaystyle{ \mathbf{B}_l = \left[ \begin{matrix} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\ \mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}} \end{matrix} \right], }[/math]

the infinite depth diffraction transfer matrix. Truncating the coefficients accordingly, defining [math]\displaystyle{ {\mathbf a}^l }[/math] to be the vector of the coefficients of the scattered potential of body [math]\displaystyle{ \Delta_l }[/math], [math]\displaystyle{ \mathbf{d}_l^{\mathrm{In}} }[/math] to be the vector of coefficients of the ambient wavefield, and making use of a coordinate transformation matrix [math]\displaystyle{ {\mathbf T}_{lj} }[/math] given by

[math]\displaystyle{ ({\mathbf T}_{lj})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q) \vartheta_{jl}} }[/math]

for the propagating modes, and

[math]\displaystyle{ ({\mathbf T}_{lj})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i} (p-q) \vartheta_{jl}} }[/math]

for the decaying modes, a linear system of equations for the unknown coefficients follows

[math]\displaystyle{ {\mathbf a}_l = {\mathbf {B}}_l \Big( {\mathbf d}_l^{\mathrm{In}} + \sum_{j=1,j \neq l}^{N} {\mathbf T}_{lj} \, {\mathbf a}_j \Big), \quad l=1, \ldots, N. }[/math]

The matrix [math]\displaystyle{ {\mathbf \hat{B}}_l }[/math] denotes the infinite depth diffraction transfer matrix [math]\displaystyle{ {\mathbf B}_l }[/math] in which the elements associated with decaying scattered modes have been multiplied with the appropriate integration weights depending on the discretisation of the continuous variable.