Seakeeping In Random Waves

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Wave and Wave Body Interactions
Current Chapter Seakeeping In Random Waves
Next Chapter Solution of Wave-Body Flows, Green's Theorem
Previous Chapter Derivative Seakeeping Quantities



Assume known the ambient wave spectral density [math]\displaystyle{ S_{\zeta}(\omega_0)\, }[/math] assumed unidirectional for simplicity

[math]\displaystyle{ \frac{1}{2}A_i^2 = S(\omega_i)\Delta\omega \, }[/math]
  • [math]\displaystyle{ \int_0^\infty S_\zeta(\omega) \mathrm{d}\omega = \sigma_\zeta^2 \equiv \, }[/math] Variance of the wave elevation of ambient random seastate, assumed Gaussian with zero mean
  • Assuming that the [math]\displaystyle{ RAO(\omega)\, }[/math] of a seakeeping quantity [math]\displaystyle{ X(t) \, }[/math] has been determined from a frequency domain analysis;

Spectral analysis with forward-speed

[math]\displaystyle{ \omega = \left| \omega_0 - U \frac{\omega_0^2}{g} \cos \beta \right| }[/math]
  • Ambient wave spectral density [math]\displaystyle{ S_\zeta(\omega_0)\, }[/math] is defined relative to the absolute wave frequency [math]\displaystyle{ \omega_0\, }[/math].
  • The [math]\displaystyle{ RAO_X(\omega) \, }[/math] is usually defined relative to the encounter frequency [math]\displaystyle{ \omega\, }[/math].
  • The relation of [math]\displaystyle{ \omega \leftrightarrow \omega_0 \, }[/math] is not single valued. The question thus arises of what is the [math]\displaystyle{ \sigma_X^2\, }[/math]?

Answer

  • Given [math]\displaystyle{ \omega_0 \, }[/math], a single value of [math]\displaystyle{ \omega\, }[/math] always follows.
  • The opposite is not always true. Given [math]\displaystyle{ \omega\, }[/math] there may exist multiple [math]\displaystyle{ \omega_0\, }[/math]'s satisfying the encounter frequency relation.
  • Therefore it is much simpler to parameterize with respect to [math]\displaystyle{ \omega_0\, }[/math], even when the [math]\displaystyle{ RAO(\omega)\, }[/math] is evaluated as a function of [math]\displaystyle{ \omega\, }[/math].

Proceed as follows:

Simply redefine the [math]\displaystyle{ RAO(\omega)\, }[/math] as follows:

[math]\displaystyle{ \left|RAO_3\right|(\omega) = \left|RAO_3\right| \left( \omega_0 - U \frac{\omega_0^2}{g} \cos\beta \right) \equiv \left|RAO_3 \right| (\omega_0) \, }[/math]

New function of [math]\displaystyle{ \omega_0\, }[/math] by virtue of the [math]\displaystyle{ \omega \leftrightarrow\, \omega_0 }[/math] relation.

The standard deviation of heave follows by simple integration over [math]\displaystyle{ \omega_0\, }[/math]:

[math]\displaystyle{ \sigma_3^2 = \int_0^\infty \mathrm{d}\omega_0 S_\zeta \left(\omega_0\right) \left|RAO_3^*\left(\omega_0\right)\right|^2 }[/math]
  • The opposite choice of parameterizing the above integral w.r.t. [math]\displaystyle{ \omega\, }[/math] ends up with a lot of unnecessary algebra.


Ocean Wave Interaction with Ships and Offshore Energy Systems