Superposition of Linear Plane Progressive Waves

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Superposition of Linear Plane Progressive Waves

Oblique Plane Waves

Consider wave propagation at an angle [math]\displaystyle{ \theta \, }[/math] to the x-axis

[math]\displaystyle{ \eta = A \cos ( kx\cos\theta+kz\sin\theta-\omega{t}) = A \cos (k_xx+k_zz-\omega{t}) \, }[/math]
[math]\displaystyle{ \phi = \frac{gA}{\omega} \frac{\cosh k (y+h)}{\cosh k h} \sin (kx\cos\theta+kz\sin\theta-\omega t) }[/math]
[math]\displaystyle{ \omega = g k \tanh k h; \ k_x=k\cos\theta, k_z = k\sin\theta, \ k=\sqrt{k_x+k_z} }[/math]

Standing Waves

[math]\displaystyle{ \eta = A \cos (kx-\omega t) + A \cos (-kx-\omega{t}) = 2 A \cos kx \cos \omega t \, }[/math]
[math]\displaystyle{ \phi = - \frac{2 g A}{\omega} \frac{\cosh k (y+h)}{\cosh k h} \cos kx \sin \omega t }[/math]
[math]\displaystyle{ \frac{\partial\eta}{\partial{x}} \sim \frac{\partial\phi}{\partial{x}} = \cdots \sin kx = 0 \, }[/math] at [math]\displaystyle{ x=0, \ \frac{n\pi}{k} = \frac{n\lambda}{2} \, }[/math]

Therefore, [math]\displaystyle{ \left. \frac{\partial\phi}{\partial{x}} \right|_x = 0 \, }[/math]. To obtain a standing wave, it is necessary to have perfect reflection at the wall at [math]\displaystyle{ x=0 \, }[/math].

Define the reflection coefficient as [math]\displaystyle{ R \equiv \frac{A_R}{A_I} (\leq 1) \, }[/math].

[math]\displaystyle{ A_I = A_R \, }[/math]
[math]\displaystyle{ R = \frac{A_R}{A_I} = 1 \, }[/math]

Oblique Standing Waves

[math]\displaystyle{ \eta_I = A \cos ( k x \cos \theta + k z \sin \theta - \omega t ) \, }[/math]
[math]\displaystyle{ \eta_R = A \cos ( k x \cos (\pi-\theta) + k z \sin (\pi-\theta) - \omega t ) \, }[/math]
[math]\displaystyle{ \theta_R = \pi - \theta_I \, }[/math]

Note: same [math]\displaystyle{ A, \ R = 1 \, }[/math].

[math]\displaystyle{ \eta_T = \eta_I + \eta_R = 2 A \cos ( k x \cos \theta ) \cos ( k z \sin \theta - \omega t ) \ , }[/math]

and

[math]\displaystyle{ \lambda_x = \frac{2\pi}{k\cos\theta}; \ V_{P_x} = 0; \ \lambda_z = \frac{2\pi}{k\sin\theta}; \ V_{P_z} = \frac{\omega}{k\sin\theta} }[/math]

Check:

[math]\displaystyle{ \frac{\partial\phi}{\partial{x}} \sim \frac{\partial\eta}{\partial{x}} \sim \cdots \sin (kx\cos\theta) = 0 \, }[/math] on [math]\displaystyle{ x=0 \, }[/math]

Partial Reflection

[math]\displaystyle{ \eta_I = A_I \cos ( k x - \omega t ) = A_I R_e \left\{ e^{i \ kx - \omega t} \right\} }[/math]
[math]\displaystyle{ \eta_R = A_R \cos ( k x + \omega t + \delta ) = A_I R_e \left\{ e^{-i \ kx \omega t} \right\} }[/math]

[math]\displaystyle{ R \, }[/math]: Complex reflection coefficient

[math]\displaystyle{ R = |R| e^{-i\delta}, |R| = \frac{A_R}{A_I} \, }[/math]
[math]\displaystyle{ \eta_T = \eta_I + \eta_R = A_I R_e \left\{ e^{i\ kx-\omega t} \left( 1 + R e^{-ikx} \right) \right\} }[/math]
[math]\displaystyle{ |\eta_T| = A_I \left[ 1 + |R| + 2 |R| \cos ( 2 k x + \delta ) \right] \, }[/math]

At node,

[math]\displaystyle{ |\eta_T| = |\eta_T| = A_I ( 1 - |R| ) \, }[/math] at [math]\displaystyle{ \cos (2 k x + \delta) = -1 \, }[/math] or [math]\displaystyle{ 2 k x + \delta = ( 2 n + 1 ) \pi \, }[/math]

At antinode,

[math]\displaystyle{ |\eta_T| = |\eta_T| = A_I ( 1 + |R| ) \, }[/math] at [math]\displaystyle{ \cos (2 k x + \delta) = 1 \, }[/math] or [math]\displaystyle{ 2 k x + \delta = 2 n \pi \, }[/math]
[math]\displaystyle{ 2 k L = 2 \pi \, }[/math] so [math]\displaystyle{ L = \frac{\lambda}{2} \, }[/math]
[math]\displaystyle{ |R| = \frac{|\eta_T|-|\eta_T|}{|\eta_T|+|\eta_T|} = |R(k)| \, }[/math]

Wave Group

2 waves, same amplitude [math]\displaystyle{ A \, }[/math] and direction, but [math]\displaystyle{ \omega \, }[/math] and [math]\displaystyle{ k \, }[/math] very close to each other.

[math]\displaystyle{ \eta = \Re \left( A e^{i k_1 x - \omega_1 t } \right) \, }[/math]
[math]\displaystyle{ \eta = \Re \left( A e^{i k_2 x - \omega_2 t } \right) \, }[/math]
[math]\displaystyle{ \omega, = \omega, ( k , ) \, }[/math] and [math]\displaystyle{ V_{P_1} \approx V_{P_2} \, }[/math]
[math]\displaystyle{ \eta_T = \eta + \eta = \Re \left\{ A e^{i\ k_1x-\omega_1t} \left[ 1 + e^{i\ \delta kx - \delta\omega t} \right] \right\} \, }[/math] with [math]\displaystyle{ \delta k = k - k \, }[/math] and [math]\displaystyle{ \delta \omega = \omega - \omega \, }[/math]
[math]\displaystyle{ \begin{Bmatrix} |\eta_T| = 2 |A| \ \mbox{when} \ \delta k x - \delta \omega t = 2n \pi \\ |\eta_T| = 0 \ \mbox{when} \ \delta k x - \delta \omega t = (2n+1) \pi \end{Bmatrix} x_g = V_g t, \ \delta k V_g t =0 \ \mbox{when} \ V_g = \frac{\delta\omega}{\delta k} }[/math]

In the limit,

[math]\displaystyle{ \delta k, \delta\omega \to 0, \ \left. V_g = \frac{d\omega}{dk} \right|_{k_1\approx k_2\approx k} , }[/math]

and since

[math]\displaystyle{ \omega = g k \tanh k h \Rightarrow \, }[/math]
[math]\displaystyle{ V_g = \underbrace{\left( \frac{\omega}{k} \right)}_{V_P} \underbrace{\frac{1}{2} \left( 1+\frac{2kh}{\sinh 2kh} \right)}_n }[/math]

[math]\displaystyle{ \begin{Bmatrix} & (a) \ \mbox{deep water} \ kh \gg 1 & n = \frac{V_g}{V_P} = -1 \\ & (b) \ \mbox{shallow water} \ kh \ll 1 & n=\frac{V_g}{V_P}=1 \ \mbox{no dispersion} \\ & (c) \ \mbox{intermediate depth} & -1 \lt n \lt 1 \end{Bmatrix} V_g \leq V_P }[/math]

Wave Energy -Energy Associated with Wave Motion.

For a single plane progressive wave:

align="center" ! Energy per unit surface area of wave
[math]\displaystyle{ \bullet }[/math] Potential energy PE [math]\displaystyle{ \bullet }[/math] Kinetic energy KE
PE without wave [math]\displaystyle{ = \int_{-h} \rho g y dy = - - \rho g h \, }[/math]
PE with wave [math]\displaystyle{ \int_{-h}^\eta \rho g y dy = - \rho g ( \eta - h ) \, }[/math]
[math]\displaystyle{ PR_{wave} = - \rho g \eta = - \rho g A \cos ( kx - \omega t) \, }[/math]
[math]\displaystyle{ KE_{wave} = \int_{-h}^\eta dy - \rho ( u + v ) }[/math]
Deep water [math]\displaystyle{ = \cdots = - \rho g A \ }[/math] to leading order
Finite depth [math]\displaystyle{ = \cdots \, }[/math]
Average energy over one period or one wavelength
[math]\displaystyle{ \overline{PE}_{wave} = - \rho g A \, }[/math] [math]\displaystyle{ \overline{KE}_{wave} = - \rho g A \, }[/math] at any [math]\displaystyle{ h \, }[/math]
  • Total wave energy in deep water:

[math]\displaystyle{ E = PE + KE = - \rho g A \left[ \cos ( k x - \omega t ) + - \right] \, }[/math]

  • Average wave energy [math]\displaystyle{ E \, }[/math] (over 1 period or 1 wavelength) for any water depth:

[math]\displaystyle{ \overline{E} = - \rho g A \left[ \overline{PE} + \overline{KE} \right] = - \rho g A = E_S , \, }[/math]
[math]\displaystyle{ E_S \equiv \, }[/math] Specific Energy: total average wave energy per unit surface area.

  • Linear waves: [math]\displaystyle{ \overline{PE} = \overline{KE} = \frac{1}{2} E_S \, }[/math] (equipartition).
  • Nonlinear waves: [math]\displaystyle{ \overline{PE} \gt \overline{PE} \, }[/math].

Energy Propagation - Group Velocity

Consider a fixed control volume [math]\displaystyle{ V \, }[/math] to the right of 'screen' [math]\displaystyle{ S \, }[/math]. Conservation of energy:

[math]\displaystyle{ \underbrace{\frac{dW}{dt}} \, }[/math] [math]\displaystyle{ = \, }[/math] [math]\displaystyle{ \underbrace{\frac{dE}{dt}} \, }[/math] [math]\displaystyle{ = \, }[/math] [math]\displaystyle{ \underbrace{\Im} \, }[/math]
rate of work done on [math]\displaystyle{ S \, }[/math] rate of change of energy in [math]\displaystyle{ V \, }[/math] energy flux left to right

where

[math]\displaystyle{ \Im = \int_{-h}^\eta pu dy \ \, }[/math] with [math]\displaystyle{ \ p = - \rho \left( \frac{d\phi}{dt} + gy \right) \ }[/math] and [math]\displaystyle{ \ u = \frac{\partial\phi}{\partial x} \, }[/math]
[math]\displaystyle{ \overline{\Im} = \underbrace{\left( -\rho g A \right)}_{\overline{E}} \underbrace{\underbrace{\frac{\omega}{k}}_{V_P} \underbrace{\left[-\left(1+\frac{kh}{kh}\right)\right]}_n}_{V_g} = \overline{E} (n V_P) = \overline{E} V_g }[/math]

e.g. [math]\displaystyle{ A = 3m, \ T = 10\mbox{sec} \rightarrow \overline{\Im} = 400KW/m \, }[/math]

Equation of Energy Conservation

[math]\displaystyle{ \left( \overline{\Im} - \overline{\Im} \right) \Delta t = \Delta \overline{E} \Delta x \, }[/math]
[math]\displaystyle{ \overline{\Im} = \overline{\Im} + \left. \frac{\partial\overline{\Im}}{\partial{x}} \right| \Delta x + \cdots \, }[/math]
[math]\displaystyle{ \frac{\partial\overline{E}}{\partial{t}} + \frac{\partial\overline{\Im}}{\partial{x}} = 0 \, }[/math], but [math]\displaystyle{ \overline{\Im} = V_g \overline{E} \, }[/math]
[math]\displaystyle{ \frac{\partial\bar{E}}{\partial{t}} + \frac{\partial}{\partial{x}} \left( V_g \overline{E} \right) = 0 \, }[/math]

1. [math]\displaystyle{ \frac{\partial\overline{E}}{\partial{t}}=0, \ V_g \overline{E} = \ \, }[/math] constant in [math]\displaystyle{ x \, }[/math] for any [math]\displaystyle{ h(x) \, }[/math].

2. [math]\displaystyle{ V_g = \, }[/math] constant (i.e., constant depth, [math]\displaystyle{ \delta k \ll k )\, }[/math]

[math]\displaystyle{ \left( \frac{\partial}{\partial t} + V_g \frac{\partial}{\partial{x}} \right) \bar{E} = 0, \ }[/math] so [math]\displaystyle{ \ \overline{E} = \overline{E} (x-V_g t) \ }[/math] or [math]\displaystyle{ \ A = A ( x - V_g t ) \, }[/math]

i.e., wave packet moves at [math]\displaystyle{ V_g \, }[/math].

Steady Ship Waves, Wave Resistance

  • Ship wave resistance drag [math]\displaystyle{ D_w \, }[/math]
Rate of work done = rate of energy increase
[math]\displaystyle{ D_w U + \overline{\Im} = \frac{d}{dt} (\overline{E}L) = \overline{E}U \, }[/math]
[math]\displaystyle{ D_w = \frac{1}{U} ( \overline{E} U - \overline{E} U /2 ) = - \overline{E} = - \rho g A \ \Rightarrow \ D_w \propto A }[/math]
  • Amplitude of generated waves

The amplitude [math]\displaystyle{ A \, }[/math] depends on [math]\displaystyle{ U \, }[/math] and the ship geometry. Let [math]\displaystyle{ \ell \equiv \, }[/math] effective length.

To approximate the wave amplitude [math]\displaystyle{ A \, }[/math] superimpose a bow wave ([math]\displaystyle{ \eta_b \, }[/math]) and a stern wave ([math]\displaystyle{ \eta_s \, }[/math]).

[math]\displaystyle{ \eta_b = a \cos (kx) \ \, }[/math] and [math]\displaystyle{ \ \eta_S = - a \cos (k ( x+ \ell )) \, }[/math]
[math]\displaystyle{ \eta_T = \eta_b + \eta_S \, }[/math]
[math]\displaystyle{ A = | \eta_T | = 2 a \left|\sin (-k\ell)\right| \ \leftarrow \ }[/math] envelope amplitude
[math]\displaystyle{ D_w = - \rho g A = \rho g a \sin ( -k \ell ) \ \Rightarrow \ D_w = \rho g a \sin \left( - \frac{g\ell}{U^2} \right) \, }[/math]
  • Wavelength of generated waves To obtain the wave length, observe that the phase speed of the waves must equal [math]\displaystyle{ U \, }[/math]. For deep water, we therefore have
[math]\displaystyle{ V_p = U \ \Rightarrow \ \frac{\omega}{k} = U \ \begin{matrix} \mbox{deep} \\ \longrightarrow \\ \mbox{water} \end{matrix} \sqrt{\frac{g}{k}} = U, \ }[/math] or [math]\displaystyle{ \lambda = 2 \pi \frac{U}{g} }[/math]
  • Summary Steady ship waves in deep water.
[math]\displaystyle{ U = \, }[/math] ship speed
[math]\displaystyle{ V_p = \sqrt{\frac{g}{k}} = U; \ }[/math] so [math]\displaystyle{ \ k = \frac{g}{U} \ \, }[/math] and [math]\displaystyle{ \ \lambda = 2 \pi \frac{U}{g} \, }[/math]
[math]\displaystyle{ L = \, }[/math] ship length, [math]\displaystyle{ \ \ell \sim L \, }[/math]
[math]\displaystyle{ D_w = \rho g a \sin \left( - \frac{g\ell}{U^2} \right) \cong \rho g a \sin \left( \frac{1}{2F_{rL}} \right) \cong \rho g \sin \left( \frac{1}{2F_{rL}} \right) }[/math]



This article is based on the MIT open course notes and the original article can be found here.

Marine Hydrodynamics