Difference between revisions of "Template:Derivation of reflection and transmission in two dimensions"

From WikiWaves
Jump to navigationJump to search
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave.  They hold the property that <math> |R|^2+|T|^2=1\,</math> (and may often contain an imaginery element).
+
The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave.  Conservation of energy means that <math> |R|^2+|T|^2=1\,</math>.
  
 
[[Image:Square_volume.png|600px|right|thumb|frame|A diagram depicting the area <math>\Omega\,</math> which is bounded by the rectangle <math>\partial \Omega \,</math>.  The rectangle <math>\partial \Omega \,</math> is bounded by <math> -h \leq z \leq 0 \,</math> and <math>-\infty  \leq x \leq  \infty \,</math> or <math>-N  \leq x \leq  N\,</math>]]
 
[[Image:Square_volume.png|600px|right|thumb|frame|A diagram depicting the area <math>\Omega\,</math> which is bounded by the rectangle <math>\partial \Omega \,</math>.  The rectangle <math>\partial \Omega \,</math> is bounded by <math> -h \leq z \leq 0 \,</math> and <math>-\infty  \leq x \leq  \infty \,</math> or <math>-N  \leq x \leq  N\,</math>]]
  
We can calculate the Reflection and Transmission coefficients as follows:
+
We can calculate the Reflection and Transmission coefficients by
Applying Green's theorem to <math>\phi\,</math> and <math>\phi^{\mathrm{I}}\,</math> gives:
+
applying Green's theorem to <math>\phi\,</math> and <math>\phi^{\mathrm{I}}\,</math>  
 +
{{incident plane wave 2d definition}}
 +
We assume that <math>A=1</math>. This gives us
 
<center><math>
 
<center><math>
0 = \iint_{\Omega}(\phi\nabla^2\phi^{\mathrm{I}} - \phi^{\mathrm{I}}\nabla^2\phi)\mathrm{d}x\mathrm{d}z  
+
\iint_{\Omega}(\phi\Delta\phi^{\mathrm{I}} - \phi^{\mathrm{I}}\Delta\phi)\mathrm{d}x\mathrm{d}z  
= \int_{\partial\Omega}(\phi\frac{\partial\phi^{\rm I}}{\partial n} - \phi^{\rm I}\frac{\partial\phi}{\partial n})\mathrm{d}l,
+
= \int_{\partial\Omega}(\phi \partial_n \phi^{\rm I} - \phi^{\rm I}\partial_n\phi)\mathrm{d}s = 0,
 
</math></center>
 
</math></center>
 +
This means that (using the far field behaviour of the potential <math>\phi</math>)
 
<center><math>
 
<center><math>
= \phi_0(0) \int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x  
+
\int_{\partial\Omega_{B}}
   - 2k_0 R  \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z.
+
(\phi \partial_n \phi^{\rm I} - \phi^{\rm I}\partial_n\phi)\mathrm{d}s
</math></center><br\>
+
+ 2k_0 R  \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z = 0,
where  <math> k_0 \,</math> is the first imaginery root of the dispersion equation and the incident wave is of the form: <math> \phi^I=\phi_0(z)e^{-ikx} \,</math><br\><br\>
+
</math></center>
Therefore, in the case of a floating plate (where z=0):
+
For the present case the body is present only on the surface and we therefore have
 +
<center><math>
 +
\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x  
 +
   + 2k_0 R  \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z = 0
 +
</math></center>
 +
Therefore  
 
<center><math>
 
<center><math>
R = \frac{\int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
+
R = -\frac{\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
 
  {2 k_0  \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
 
  {2 k_0  \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
 
</math></center>
 
</math></center>
 
and using a wave incident from the right we obtain
 
and using a wave incident from the right we obtain
 
<center><math>
 
<center><math>
1 + T = \frac{\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
+
T = 1 - \frac{\int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x }
 
  {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
 
  {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}.
 
</math></center>
 
</math></center>
 +
Note that an expression for the integral in the denominator can be found in
 +
[[Eigenfunction Matching for a Semi-Infinite Dock]]

Latest revision as of 09:33, 27 November 2009

The Reflection and Transmission Coefficients represent the ratio of the amplitude of the reflected or transmitted wave to the amplitude of the incident wave. Conservation of energy means that [math]\displaystyle{ |R|^2+|T|^2=1\, }[/math].

A diagram depicting the area [math]\displaystyle{ \Omega\, }[/math] which is bounded by the rectangle [math]\displaystyle{ \partial \Omega \, }[/math]. The rectangle [math]\displaystyle{ \partial \Omega \, }[/math] is bounded by [math]\displaystyle{ -h \leq z \leq 0 \, }[/math] and [math]\displaystyle{ -\infty \leq x \leq \infty \, }[/math] or [math]\displaystyle{ -N \leq x \leq N\, }[/math]

We can calculate the Reflection and Transmission coefficients by applying Green's theorem to [math]\displaystyle{ \phi\, }[/math] and [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

We assume that [math]\displaystyle{ A=1 }[/math]. This gives us

[math]\displaystyle{ \iint_{\Omega}(\phi\Delta\phi^{\mathrm{I}} - \phi^{\mathrm{I}}\Delta\phi)\mathrm{d}x\mathrm{d}z = \int_{\partial\Omega}(\phi \partial_n \phi^{\rm I} - \phi^{\rm I}\partial_n\phi)\mathrm{d}s = 0, }[/math]

This means that (using the far field behaviour of the potential [math]\displaystyle{ \phi }[/math])

[math]\displaystyle{ \int_{\partial\Omega_{B}} (\phi \partial_n \phi^{\rm I} - \phi^{\rm I}\partial_n\phi)\mathrm{d}s + 2k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z = 0, }[/math]

For the present case the body is present only on the surface and we therefore have

[math]\displaystyle{ \int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x + 2k_0 R \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z = 0 }[/math]

Therefore

[math]\displaystyle{ R = -\frac{\int_{-L}^{L} e^{-k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x } {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}. }[/math]

and using a wave incident from the right we obtain

[math]\displaystyle{ T = 1 - \frac{\int_{-L}^{L} e^{k_0 x} \left(\alpha \phi(x) - \partial_n \phi(x)\right)\mathrm{d}x } {2 k_0 \int_{-h}^{0} \left(\phi_0(z)\right)^2 \mathrm{d}z}. }[/math]

Note that an expression for the integral in the denominator can be found in Eigenfunction Matching for a Semi-Infinite Dock