Template:Equations for a beam

From WikiWaves
Revision as of 21:22, 24 March 2009 by Meylan (talk | contribs)
Jump to navigationJump to search

For a Bernoulli-Euler Beam, the equation of motion is given by the following

[math]\displaystyle{ \partial_x^2\left(D\partial_x^2 \zeta\right) + \rho_i h \partial_t^2 \zeta = p }[/math]

where [math]\displaystyle{ D }[/math] is the flexural rigidity, [math]\displaystyle{ \rho_i }[/math] is the density of the plate, [math]\displaystyle{ h }[/math] is the thickness of the plate, [math]\displaystyle{ p }[/math] is the pressure and [math]\displaystyle{ \zeta }[/math] is the plate vertical displacement. Note that this equations simplifies if the plate has constant properties.

The edges of the plate can satisfy a range of boundary conditions. The natural boundary condition (i.e. free-edge boundary conditions).

[math]\displaystyle{ \partial_x^2 \zeta = 0, \,\,\partial_x^3 \zeta = 0 }[/math]

at the edges of the plate.