Difference between revisions of "Template:Equations for fixed bodies in the time domain"

From WikiWaves
Jump to navigationJump to search
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Equations for fixed bodies in the time domain=
 
  
We consider a two-dimensional fluid domain of constant depth, which
+
{{coordinate definition in two dimension}}
contains a finite number of fixed bodies of arbitrary geometry. We
 
denote the fluid domain by <math>\Omega</math>, the boundary of the fluid domain
 
which touches the fixed bodies by <math>\partial\Omega</math>, and the free
 
surface by <math>F.</math> The <math>x</math> and <math>z</math> coordinates are such that <math>x</math> is
 
pointing in the horizontal direction and <math>z</math> is pointing in the
 
vertical upwards direction (we denote <math>\mathbf{x}=\left( x,z\right) ).</math> The
 
free surface is at <math>z=0</math> and the sea floor is at <math>z=-h</math> (the theory
 
would be almost identical if the sea floor depth varied within some
 
finite region and was at <math>z=-h</math> outside this region). The equations
 
of motion in the time domain are
 
  
<center><math>
+
{{equations of motion time domain without body condition}}
\Delta\Phi\left(  \mathbf{x,}t\right)  =0,\ \ \mathbf{x}\in\Omega,
+
 
(1)
+
The body boundary condition for a fixed body is
</math></center>
 
 
<center><math>
 
<center><math>
 
\partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega,
 
\partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega,
 
</math></center>
 
</math></center>
<center><math>
 
\partial_{n}\Phi=0,\ \ z=-h,
 
</math></center>
 
where <math>\Phi</math> is the velocity potential for the fluid.  At the free
 
surface we have the kinematic condition
 
<center><math>
 
\partial_{t}\zeta=\partial_{n}\Phi,\ \ z=0,\ x\in F,
 
</math></center>
 
and the dynamic condition (the linearized Bernoulli equation)
 
<center><math>
 
\zeta = -\partial_{t}\Phi,\ \ z=0,\ x\in F,(2)
 
</math></center>
 
 
where <math>\zeta</math> is the free-surface elevation.  Equations
 
\eqref{laplace_time} to \eqref{dynamic_time} are in non-dimensional
 
form (so that the fluid density and gravity are both unity).  They are
 
also subject to initial conditions
 
<center><math>
 
  (3)
 
  \left.\zeta\right|_{t=0} = \zeta_0(x)\,\,\,\mathrm{and}\,\,\,
 
\left.\partial_t\zeta\right|_{t=0} = v_0(x).
 
</math></center>
 
Figure~4 is a schematic
 
diagram of the problem.
 
  
\begin{figure}
 
\begin{center}
 
\begin{pspicture}(0,0)(8,6)
 
  
\psline[linewidth=2pt](0,1)(7.5,1)
+
The initial conditions are
\psline[linewidth=2pt](0,5)(7.5,5)
+
{{initial free surface time domain}}
\rput[l](6,3){\Large<math>\Delta\Phi = 0</math>}
 
\rput[1](6.5,5.3){<math>\partial_t \zeta = \partial_n\Phi</math>}
 
\rput[l](0,5.3){<math>\partial_t \Phi = - \zeta</math>}
 
\rput[l](5,1.5){<math>\partial_n \Phi =0 </math>}
 
\rput[l](3.35,2.5){<math>\partial_n \Phi =0 </math>}
 
\rput[l](2,4){<math>\partial_n \Phi =0</math>}
 
\rput[l](4.5,4){<math>\partial\Omega</math>}
 
\rput[l](2,1.5){<math>\partial\Omega</math>}
 
\rput[l](1,3){\Large <math>\Omega</math>}
 
\rput[l](7.7,5.1){<math>z=0</math>}
 
\rput[l](7.7,1.1){<math>z=-h</math>}
 
\pscurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
 
    showpoints=false](5,5)(4,4)(2,5)
 
\psccurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
 
    showpoints=false](3,3)(2,2)(3,2)
 
\end{pspicture}
 
\end{center}
 
\caption{Schematic diagram showing the time-dependent equations}
 
(4)
 
\end{figure}
 

Latest revision as of 10:46, 21 August 2009

We consider a two-dimensional fluid domain of constant depth, which contains a finite number of fixed bodies of arbitrary geometry. We denote the fluid domain by [math]\displaystyle{ \Omega }[/math], the boundary of the fluid domain which touches the fixed bodies by [math]\displaystyle{ \partial\Omega }[/math], and the free surface by [math]\displaystyle{ F. }[/math] The [math]\displaystyle{ x }[/math] and [math]\displaystyle{ z }[/math] coordinates are such that [math]\displaystyle{ x }[/math] is pointing in the horizontal direction and [math]\displaystyle{ z }[/math] is pointing in the vertical upwards direction (we denote [math]\displaystyle{ \mathbf{x}=\left( x,z\right) ). }[/math] The free surface is at [math]\displaystyle{ z=0 }[/math] and the sea floor is at [math]\displaystyle{ z=-h }[/math]. The fluid motion is described by a velocity potential [math]\displaystyle{ \Phi }[/math] and free surface by [math]\displaystyle{ \zeta }[/math].

The equations of motion in the time domain are Laplace's equation through out the fluid

[math]\displaystyle{ \Delta\Phi\left( \mathbf{x,}t\right) =0,\ \ \mathbf{x}\in\Omega. }[/math]

At the bottom surface we have no flow

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ z=-h. }[/math]

At the free surface we have the kinematic condition

[math]\displaystyle{ \partial_{t}\zeta=\partial_{n}\Phi,\ \ z=0,\ x\in \partial\Omega_{F}, }[/math]

and the dynamic condition (the linearized Bernoulli equation)

[math]\displaystyle{ \partial_{t}\Phi = -g\zeta ,\ \ z=0,\ x\in \partial\Omega_{F}. }[/math]

The body boundary condition for a fixed body is

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega, }[/math]


The initial conditions are

[math]\displaystyle{ \left.\zeta\right|_{t=0} = \zeta_0(x)\,\,\,\mathrm{and}\,\,\, \left.\partial_t\zeta\right|_{t=0} = \partial_t\zeta_0(x). }[/math]