Difference between revisions of "Template:Fixed body finite depth equations in two dimensions"

From WikiWaves
Jump to navigationJump to search
Line 23: Line 23:
 
We also have to apply the [[Sommerfeld Radiation Condition]] as <math>\left|\mathbf{r}\right|\rightarrow
 
We also have to apply the [[Sommerfeld Radiation Condition]] as <math>\left|\mathbf{r}\right|\rightarrow
 
\infty</math>.
 
\infty</math>.
 
 
In two-dimensions the condition is  
 
In two-dimensions the condition is  
 
<center><math>
 
<center><math>
Line 29: Line 28:
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
</math></center>
 
</math></center>
where <math>\phi^{\mathrm{{In}}}</math> is the incident potential and <math>k</math>
+
where <math>k</math>
 
is the wave number.
 
is the wave number.

Revision as of 08:45, 23 August 2008

The Standard Linear Wave Scattering Problem in Finite Depth for a fixed body in two dimensions is

[math]\displaystyle{ \nabla^{2}\phi=0, \, -h\lt z\lt 0,\,\,\,\mathbf{x}\notin \Omega }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z}=0, \, z=-h, }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z} = \alpha \phi,\,z=0,\,\,\mathbf{x}\notin\Omega, }[/math]
[math]\displaystyle{ \frac{\partial\phi}{\partial z} = 0, \, z\in\partial\Omega. }[/math]

The equation is subject to some radiation conditions at infinity. We usually assume that there is an incident wave [math]\displaystyle{ \phi^{\mathrm{{In}}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction

[math]\displaystyle{ \phi^{\mathrm{{In}}}({r},z)=Ae^{k_0 x}\frac{\cos k_0(z+h)}{\cos k_0 h} }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude and [math]\displaystyle{ k_0 }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface. We also have to apply the Sommerfeld Radiation Condition as [math]\displaystyle{ \left|\mathbf{r}\right|\rightarrow \infty }[/math]. In two-dimensions the condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|} -k_0\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ k }[/math] is the wave number.