Difference between revisions of "Template:Fixed body finite depth equations in two dimensions"

From WikiWaves
Jump to navigationJump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
The [[Standard Linear Wave Scattering Problem]]
+
{{boundary value problem for a fixed body}}
in [[Finite Depth]] for a fixed body in two dimensions is
+
 
<center><math>
+
{{incident plane wave}}
\nabla^{2}\phi=0, \, -h<z<0,\,\,\,\mathbf{x}\notin \Omega
+
 
</math></center>
+
{{sommerfeld radiation condition two dimensions}}
<center><math>
 
\frac{\partial\phi}{\partial z}=0, \, z=-h,
 
</math></center>
 
<center><math>
 
\frac{\partial\phi}{\partial z} = \alpha \phi,\,z=0,\,\,\mathbf{x}\notin\Omega,
 
</math></center>
 
<center><math>
 
\frac{\partial\phi}{\partial z} = 0, \, z\in\partial\Omega.
 
</math></center>
 
The equation is subject to some radiation conditions at infinity. We usually assume that
 
there is an incident wave <math>\phi^{\mathrm{{In}}}\,</math> 
 
is a plane wave travelling in the <math>x</math> direction
 
<center><math>
 
\phi^{\mathrm{{In}}}({r},z)=Ae^{k_0 x}\frac{\cos k_0(z+h)}{\cos k_0 h}
 
</math></center>
 
where <math>A</math> is the wave amplitude and <math>k_0</math> is
 
the positive imaginary solution of the [[Dispersion Relation for a Free Surface]].
 
We also have to apply the [[Sommerfeld Radiation Condition]] as <math>\left|\mathbf{r}\right|\rightarrow
 
\infty</math>.
 
In two-dimensions the condition is
 
<center><math>
 
\left(  \frac{\partial}{\partial|x|} -k_0\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
</math></center>
 
where <math>k</math>
 
is the wave number.
 

Latest revision as of 07:25, 24 August 2008

The Standard Linear Wave Scattering Problem in Finite Depth for a fixed body is

[math]\displaystyle{ \begin{align} \Delta\phi &=0, &-h\lt z\lt 0,\,\,\mathbf{x} \in \Omega \\ \partial_z\phi &= 0, &z=-h, \\ \partial_z \phi &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]


(note that the last expression can be obtained from combining the expressions:

[math]\displaystyle{ \begin{align} \partial_z \phi &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\ \mathrm{i} \omega \phi &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]

where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math]) The body boundary condition for a rigid body is just

[math]\displaystyle{ \partial_{n}\phi=0,\ \ \mathbf{x}\in\partial\Omega_{\mathrm{B}}, }[/math]

The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

In two-dimensions the Sommerfeld Radiation Condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|} - \mathrm{i} k \right) (\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.