Difference between revisions of "Template:Reflection and transmission coefficients BEM"

From WikiWaves
Jump to navigationJump to search
(Created page with '=== Reflection and Transmission Coefficients === If we multiply the potential at the left (after subtracting the incident wave) and the right by <math>\mathbf{R}</math> we can c…')
 
(expansion of R,T discussion (acknowl:: colm))
 
Line 1: Line 1:
 
=== Reflection and Transmission Coefficients ===
 
=== Reflection and Transmission Coefficients ===
  
If we multiply the potential at the left (after subtracting the incident wave) and the right by
+
Recall that our Sommerfeld radiation condition can be expressed in the form
 +
<center><math>
 +
\lim\limits_{x\rightarrow -\infty }\phi \left( x,z\right) = \phi_0
 +
e^{-k_{0}x}
 +
+R\phi_0
 +
e^{k_{0}x},
 +
</math></center>
 +
and that the potential in the region <math>
 +
\Omega </math> is of the form
 +
<center><math>
 +
\phi \left( x,z\right)  = \phi_0(z)e^{-k_0 x}
 +
+\sum_{m=0}^{\infty } a_m  \phi _{m}\left( z\right)
 +
e^{k_{m}\left( x+l\right) }.
 +
</math></center>
 +
Note that for this series, if <math>m=0 </math>, then <math>k_m </math> is imaginary, giving rise to a propagating wave.  For <math>m \geq 1</math>, there is only a local contribution to this propagating wave -- in the extremes, there is no contribution (evanescent modes).
 +
 
 +
 
 +
So when looking at the Reflected and Transmitted waves, we only consider <math>m=0 </math>, that is,
 +
<center><math>
 +
\begin{align}
 +
\lim\limits_{x\rightarrow -\infty }\phi  &= \phi_0 e^{-k_{0}x} + a_0 \phi_0 e^{k_0 (x+l)} ,\\
 +
&=  \phi_0 e^{-k_{0}x} +R\phi_0 e^{k_{0}x}. \\
 +
\end{align}
 +
</math></center>
 +
 
 +
 
 +
Consequently, it is straightforward to see that <math>R = a_0 e^{k_0 l}</math>.  Recall from earlier that
 +
 
 +
<center><math>
 +
a_m +\delta_{m0}e^{k_0 l} = \frac{1}{A_m} \int_{-h}^{0} f(z) \phi_m(z) \mathrm{d}z,
 +
</math></center>
 +
 
 +
therefore,
 +
 
 +
<center><math>
 +
a_0= \left[  \frac{1}{A_0} \int_{-h}^{0} f(z) \phi_0(z) \mathrm{d}z - e^{k_0 l} \right].
 +
</math></center>
 +
 
 +
However, we make use of the fact that
 +
<math>
 +
\mathbf{Q}[f]=\mathbf{S}\,\mathbf{R}\,[f]
 +
</math>, where the components of the matrix <math>\mathbf{R}</math> is
 +
<center><math>
 +
r_{mj} = \frac{1}{A_m} \int_{z_{j}-\Delta x/2}^{z_{j}+\Delta x/2}\phi
 +
_{m}\left( s\right) \mathrm{d}s,
 +
</math></center>
 +
which admits the representation
 +
<center><math>
 +
a_0= \left[  \sum_{j} r_{0j} f(z_j) - e^{k_0 l} \right].
 +
</math></center>
 +
 
 +
 
 +
Consequently,
 +
<center><math>
 +
R= \left[  \sum_{j} r_{0j} f(z_j) - e^{k_0 l} \right]e^{k_0 l}.
 +
</math></center>
 +
 
 +
 
 +
So in summary, if we multiply the potential at the left (after subtracting the incident wave) and the right by
 
<math>\mathbf{R}</math> we can calculate the coefficients in the eigenfunction expansion, and
 
<math>\mathbf{R}</math> we can calculate the coefficients in the eigenfunction expansion, and
 
hence determine the reflection and transmission coefficient.  
 
hence determine the reflection and transmission coefficient.  
 
where <math>z_{j}</math> is the value of the <math>z</math> coordinate in the centre of the panel
 
where <math>z_{j}</math> is the value of the <math>z</math> coordinate in the centre of the panel
 
and <math>\Delta x</math> is the panel length.
 
and <math>\Delta x</math> is the panel length.

Latest revision as of 03:30, 23 February 2010

Reflection and Transmission Coefficients

Recall that our Sommerfeld radiation condition can be expressed in the form

[math]\displaystyle{ \lim\limits_{x\rightarrow -\infty }\phi \left( x,z\right) = \phi_0 e^{-k_{0}x} +R\phi_0 e^{k_{0}x}, }[/math]

and that the potential in the region [math]\displaystyle{ \Omega }[/math] is of the form

[math]\displaystyle{ \phi \left( x,z\right) = \phi_0(z)e^{-k_0 x} +\sum_{m=0}^{\infty } a_m \phi _{m}\left( z\right) e^{k_{m}\left( x+l\right) }. }[/math]

Note that for this series, if [math]\displaystyle{ m=0 }[/math], then [math]\displaystyle{ k_m }[/math] is imaginary, giving rise to a propagating wave. For [math]\displaystyle{ m \geq 1 }[/math], there is only a local contribution to this propagating wave -- in the extremes, there is no contribution (evanescent modes).


So when looking at the Reflected and Transmitted waves, we only consider [math]\displaystyle{ m=0 }[/math], that is,

[math]\displaystyle{ \begin{align} \lim\limits_{x\rightarrow -\infty }\phi &= \phi_0 e^{-k_{0}x} + a_0 \phi_0 e^{k_0 (x+l)} ,\\ &= \phi_0 e^{-k_{0}x} +R\phi_0 e^{k_{0}x}. \\ \end{align} }[/math]


Consequently, it is straightforward to see that [math]\displaystyle{ R = a_0 e^{k_0 l} }[/math]. Recall from earlier that

[math]\displaystyle{ a_m +\delta_{m0}e^{k_0 l} = \frac{1}{A_m} \int_{-h}^{0} f(z) \phi_m(z) \mathrm{d}z, }[/math]

therefore,

[math]\displaystyle{ a_0= \left[ \frac{1}{A_0} \int_{-h}^{0} f(z) \phi_0(z) \mathrm{d}z - e^{k_0 l} \right]. }[/math]

However, we make use of the fact that [math]\displaystyle{ \mathbf{Q}[f]=\mathbf{S}\,\mathbf{R}\,[f] }[/math], where the components of the matrix [math]\displaystyle{ \mathbf{R} }[/math] is

[math]\displaystyle{ r_{mj} = \frac{1}{A_m} \int_{z_{j}-\Delta x/2}^{z_{j}+\Delta x/2}\phi _{m}\left( s\right) \mathrm{d}s, }[/math]

which admits the representation

[math]\displaystyle{ a_0= \left[ \sum_{j} r_{0j} f(z_j) - e^{k_0 l} \right]. }[/math]


Consequently,

[math]\displaystyle{ R= \left[ \sum_{j} r_{0j} f(z_j) - e^{k_0 l} \right]e^{k_0 l}. }[/math]


So in summary, if we multiply the potential at the left (after subtracting the incident wave) and the right by [math]\displaystyle{ \mathbf{R} }[/math] we can calculate the coefficients in the eigenfunction expansion, and hence determine the reflection and transmission coefficient. where [math]\displaystyle{ z_{j} }[/math] is the value of the [math]\displaystyle{ z }[/math] coordinate in the centre of the panel and [math]\displaystyle{ \Delta x }[/math] is the panel length.