Difference between revisions of "Template:Separation of variables for a dock"

From WikiWaves
Jump to navigationJump to search
Line 5: Line 5:
 
<center>
 
<center>
 
<math>
 
<math>
Z^{\prime\prime} + k^2 Z =0.
+
Z^{\prime\prime} + k^2 Z =0,
 
</math>
 
</math>
 
</center>
 
</center>
Line 11: Line 11:
 
<center>
 
<center>
 
<math>
 
<math>
Z^{\prime} (-h) = 0
+
Z^{\prime} (-h) = 0,
 
</math>
 
</math>
 
</center>
 
</center>
Line 17: Line 17:
 
<center>
 
<center>
 
<math>
 
<math>
Z^{\prime} (0) = 0
+
Z^{\prime} (0) = 0.
 
</math>
 
</math>
 
</center>
 
</center>
Line 25: Line 25:
 
<math>
 
<math>
 
Z = \psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
 
Z = \psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
m\geq 0
+
m\geq 0.
 
</math>
 
</math>
 
</center>
 
</center>
Line 37: Line 37:
 
<center>
 
<center>
 
<math>
 
<math>
C_{m}=\frac{1}{2}h,\quad m\neq 0 \quad \mathrm{and} \quad C_0 = h
+
C_{m}=\frac{1}{2}h,\quad m\neq 0 \quad \mathrm{and} \quad C_0 = h.
 
</math></center>
 
</math></center>

Revision as of 10:51, 11 September 2008

Separation of Variables for a Dock

The separation of variables equation for a dock

[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0, }[/math]

subject to the boundary conditions

[math]\displaystyle{ Z^{\prime} (-h) = 0, }[/math]

and

[math]\displaystyle{ Z^{\prime} (0) = 0. }[/math]

The solution is [math]\displaystyle{ k=\kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math] and

[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0. }[/math]

We note that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]

where

[math]\displaystyle{ C_{m}=\frac{1}{2}h,\quad m\neq 0 \quad \mathrm{and} \quad C_0 = h. }[/math]