Template:Separation of variables for a floating elastic plate

From WikiWaves
Revision as of 05:25, 26 August 2008 by Meylan (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Separation of variables under the Plate

The potential velocity can be written in terms of an infinite series of separated eigenfunctions under each elastic plate, of the form

[math]\displaystyle{ \psi = \frac{\cos(\kappa (z+h))}{\cos\kappa h}.\, }[/math]

If we apply the boundary conditions given we obtain the Dispersion Relation for a Floating Elastic Plate

[math]\displaystyle{ \kappa \tan{(\kappa h)}= -\frac{\alpha}{\beta \kappa^{4} + 1 - \alpha\gamma} }[/math]

Solving for [math]\displaystyle{ \kappa }[/math] gives a pure imaginary root with positive imaginary part, two complex roots (two complex conjugate paired roots with positive imaginary part in most physical situations), an infinite number of positive real roots which approach [math]\displaystyle{ {n\pi}/{h} }[/math] as [math]\displaystyle{ n }[/math] approaches infinity, and also the negative of all these roots (Dispersion Relation for a Floating Elastic Plate) . We denote the two complex roots with positive imaginary part by [math]\displaystyle{ \kappa_(-2) }[/math] and [math]\displaystyle{ \kappa_(-1) }[/math], the purely imaginary root with positive imaginary part by [math]\displaystyle{ \kappa_{0} }[/math] and the real roots with positive imaginary part by [math]\displaystyle{ \kappa_(n) }[/math] for [math]\displaystyle{ n }[/math] a positive integer. The imaginary root with positive imaginary part corresponds to a reflected travelling mode propagating along the [math]\displaystyle{ x }[/math] axis. The complex roots with positive imaginary parts correspond to damped reflected travelling modes and the real roots correspond to reflected evanescent modes.