Difference between revisions of "Template:Separation of variables for the r and theta coordinates"

From WikiWaves
Jump to navigationJump to search
 
Line 60: Line 60:
 
[http://en.wikipedia.org/wiki/Bessel_function Bessel functions] of the first
 
[http://en.wikipedia.org/wiki/Bessel_function Bessel functions] of the first
 
and second kind, respectively, of order <math>\nu</math>.
 
and second kind, respectively, of order <math>\nu</math>.
 
The potential <math>\phi</math> can thus be expressed in local cylindrical
 
coordinates as
 
<center>
 
<math>
 
\phi (r,\theta,z) = \sum_{m = 0}^{\infty} \phi_m(z) \sum_{\nu = -
 
\infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m
 
r) \right] \mathrm{e}^{\mathrm{i} \nu \theta},
 
</math>
 
</center>
 
 
  
 
Note that <math>K_\nu (\mathrm{i} x) = \pi / 2\,\,
 
Note that <math>K_\nu (\mathrm{i} x) = \pi / 2\,\,
 
\mathrm{i}^{\nu+1} H_\nu^{(2)}(x)</math> with <math>H_\nu^{(2)}</math> denoting
 
\mathrm{i}^{\nu+1} H_\nu^{(2)}(x)</math> with <math>H_\nu^{(2)}</math> denoting
 
the Hankel function of the second kind of order <math>\nu</math>.
 
the Hankel function of the second kind of order <math>\nu</math>.
 
 
 
Also, <math>I_\nu</math> does not satisfy the [[Sommerfeld Radiation Condition]]
 
Also, <math>I_\nu</math> does not satisfy the [[Sommerfeld Radiation Condition]]
 
since it becomes unbounded for increasing real argument. These
 
since it becomes unbounded for increasing real argument. These
 
solution represents incoming waves.
 
solution represents incoming waves.

Revision as of 09:06, 25 August 2008

Separation of Variable for the [math]\displaystyle{ r }[/math] and [math]\displaystyle{ \theta }[/math] coordinates

For the solution of

[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} = k_m^2 Y(r,\theta), }[/math]

another separation will be used,

[math]\displaystyle{ Y(r,\theta) =: R(r) \Theta(\theta). }[/math]

Substituting this into Laplace's equation yields

[math]\displaystyle{ \frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = - \frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d} \theta^2} = \eta^2, }[/math]

where the separation constant [math]\displaystyle{ \eta }[/math] must be an integer, say [math]\displaystyle{ \nu }[/math], in order for the potential to be continuous. [math]\displaystyle{ \Theta (\theta) }[/math] can therefore be expressed as

[math]\displaystyle{ \Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}. }[/math]

We also obtain the following expression

[math]\displaystyle{ r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in \mathbb{Z}. }[/math]

Substituting [math]\displaystyle{ \tilde{r}:=k_m r }[/math] and writing [math]\displaystyle{ \tilde{R} (\tilde{r}) := R(\tilde{r}/k_m) = R(r) }[/math], this can be rewritten as

[math]\displaystyle{ \tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2} + \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}} - (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z}, }[/math]

which is the modified version of Bessel's equation. Substituting back, the general solution is given by

[math]\displaystyle{ R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in \mathbb{N},\ \nu \in \mathbb{Z}, }[/math]

where [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] are the modified Bessel functions of the first and second kind, respectively, of order [math]\displaystyle{ \nu }[/math].

Note that [math]\displaystyle{ K_\nu (\mathrm{i} x) = \pi / 2\,\, \mathrm{i}^{\nu+1} H_\nu^{(2)}(x) }[/math] with [math]\displaystyle{ H_\nu^{(2)} }[/math] denoting the Hankel function of the second kind of order [math]\displaystyle{ \nu }[/math]. Also, [math]\displaystyle{ I_\nu }[/math] does not satisfy the Sommerfeld Radiation Condition since it becomes unbounded for increasing real argument. These solution represents incoming waves.