Template:Separation of variables in cylindrical coordinates in finite depth

From WikiWaves
Jump to navigationJump to search

The solution of the problem for the potential in finite water depth can be found by a separation ansatz,

[math]\displaystyle{ \phi (r,\theta,z) =: Y(r,\theta) Z(z).\, }[/math]

Substituting this into the equation for [math]\displaystyle{ \pi }[/math] yields

[math]\displaystyle{ \frac{1}{Y(r,\theta)} \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} \right] = - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

The possible separation constants [math]\displaystyle{ \eta }[/math] will be determined by the free surface condition and the bed condition.

In the setting of water of finite depth, the general solution [math]\displaystyle{ Z(z) }[/math] can be written as

[math]\displaystyle{ Z(z) = F \cos \big( \eta (z+d) \big) + G \sin \big( \eta (z+d) \big), \quad \eta \in \mathbb{C} \backslash \{ 0 \}, }[/math]

since [math]\displaystyle{ \eta = 0 }[/math] is not an eigenvalue. To satisfy the bed condition, [math]\displaystyle{ G }[/math] must be [math]\displaystyle{ 0 }[/math]. [math]\displaystyle{ Z(z) }[/math] satisfies the free surface condition, provided the separation constants [math]\displaystyle{ \eta }[/math] are roots of the equation

[math]\displaystyle{ - F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d) \big) = 0, \quad z=0, }[/math]

or, equivalently, if they satisfy the Dispersion Relation for a Free Surface

[math]\displaystyle{ \alpha + \eta \tan \eta d = 0\,. }[/math]

This equation has an infinite number of real roots, denoted by [math]\displaystyle{ k_m }[/math] and [math]\displaystyle{ -k_m }[/math] ([math]\displaystyle{ m \geq 1 }[/math]), but the negative roots produce the same eigenfunctions as the positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which will be denoted by [math]\displaystyle{ k_0 }[/math]. Writing [math]\displaystyle{ k_0 = - \mathrm{i} k }[/math], [math]\displaystyle{ k }[/math] is the (positive) root of the Dispersion Relation for a Free Surface

[math]\displaystyle{ \alpha = k \tanh k d,\, }[/math]

again it suffices to consider only the positive root of this equation. The solutions can therefore be written as

[math]\displaystyle{ Z_m(z) = F_m \cos \big( k_m (z+d) \big), \quad m \geq 0. }[/math]

It follows that [math]\displaystyle{ k }[/math] is the previously introduced wavenumber and the Dispersion Relation for a Free Surface gives the required relation between the radian frequency and the wavenumber.

For the solution of

[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} = k_m^2 Y(r,\theta), }[/math]

another separation will be used,

[math]\displaystyle{ Y(r,\theta) =: R(r) \Theta(\theta). }[/math]

Substituting this into Laplace's equation yields

[math]\displaystyle{ \frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = - \frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d} \theta^2} = \eta^2, }[/math]

where the separation constant [math]\displaystyle{ \eta }[/math] must be an integer, say [math]\displaystyle{ \nu }[/math], in order for the potential to be continuous. [math]\displaystyle{ \Theta (\theta) }[/math] can therefore be expressed as

[math]\displaystyle{ \Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}. }[/math]

We also obtain the following expression

[math]\displaystyle{ r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in \mathbb{Z}. }[/math]

Substituting [math]\displaystyle{ \tilde{r}:=k_m r }[/math] and writing [math]\displaystyle{ \tilde{R} (\tilde{r}) := R(\tilde{r}/k_m) = R(r) }[/math], this can be rewritten as

[math]\displaystyle{ \tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2} + \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}} - (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z}, }[/math]

which is the modified version of Bessel's equation. Substituting back, the general solution is given by

[math]\displaystyle{ R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in \mathbb{N},\ \nu \in \mathbb{Z}, }[/math]

where [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] are the modified Bessel functions of the first and second kind, respectively, of order [math]\displaystyle{ \nu }[/math].

The potential [math]\displaystyle{ \phi }[/math] can thus be expressed in local cylindrical coordinates as

[math]\displaystyle{ \phi (r,\theta,z) = \sum_{m = 0}^{\infty} Z_m(z) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}, }[/math]

where [math]\displaystyle{ Z_m(z) }[/math] is given by equation \eqref{sol_Z_fin}. Substituting [math]\displaystyle{ Z_m }[/math] back as well as noting that [math]\displaystyle{ k_0=-\mathrm{i} k }[/math] yields

[math]\displaystyle{ \phi (r,\theta,z) = F_0\cos(-\mathrm{i} k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu} I_\nu (-\mathrm{i} k r) + E_{0\nu} K_\nu (-\mathrm{i} k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} }[/math]
[math]\displaystyle{ + \sum_{m = 1}^{\infty} F_m\cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

Noting that [math]\displaystyle{ \cos \mathrm{i} x = \cosh x }[/math] is an even function and the relations [math]\displaystyle{ I_\nu(-\mathrm{i} x) = (-\mathrm{i})^{\nu} J_\nu(x) }[/math] where [math]\displaystyle{ J_\nu }[/math] is the Bessel function of the first kind of order [math]\displaystyle{ \nu }[/math] and [math]\displaystyle{ K_\nu (-\mathrm{i} x) = \pi / 2\,\, \mathrm{i}^{\nu+1} H_\nu^{(1)}(x) }[/math] with [math]\displaystyle{ H_\nu^{(1)} }[/math] denoting the Hankel function of the first kind of order [math]\displaystyle{ \nu }[/math], it follows that

[math]\displaystyle{ \phi (r,\theta,z) = F_0\cosh(k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu}' J_\nu (k r) + E_{0\nu}' H_\nu^{(1)} (k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} }[/math]
[math]\displaystyle{ + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu}' I_\nu (k_m r) + E_{m\nu}' K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

However, [math]\displaystyle{ J_\nu }[/math] does not satisfy the Sommerfeld Radiation Condition and neither does [math]\displaystyle{ I_\nu }[/math] since it becomes unbounded for increasing real argument. These two solutions represent incoming waves which will also be required later.

Therefore, the solution of the problem requires [math]\displaystyle{ D_{m\nu}'=0 }[/math] for all [math]\displaystyle{ m,\nu }[/math]. Therefore, the eigenfunction expansion of the water velocity potential in cylindrical outgoing waves with coefficients [math]\displaystyle{ A_{m\nu} }[/math] is given by

[math]\displaystyle{ \phi (r,\theta,z) = \frac{\cosh(k (z+d))}{\cosh kd} \sum_{\nu = - \infty}^{\infty} A_{0\nu} H_\nu^{(1)} (k r) \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} \frac{\cos(k_m(z+d))}{\cos k_m d} \sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

(where we have set the parameters [math]\displaystyle{ F_m }[/math] so that our vertical eigenfunctions are unity at the free surface [math]\displaystyle{ z=0 }[/math]). The two terms describe the propagating and the decaying wavefields respectively.

We can write this expression in compact notation as

[math]\displaystyle{ \phi (r,\theta,z) = \sum_{m = 0}^{\infty} f_m(z) \sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

where

[math]\displaystyle{ f_m(z) = \frac{\cos k_m (z+d)}{\cos k_m d}. }[/math]