Template:Separation of variables in cylindrical coordinates in finite depth

From WikiWaves
Revision as of 08:05, 25 August 2008 by Meylan (talk | contribs)
Jump to navigationJump to search

The solution of the problem for the potential in finite water depth can be found by a separation ansatz,

[math]\displaystyle{ \phi (r,\theta,z) =: Y(r,\theta) Z(z).\, }[/math]

Substituting this into the equation for [math]\displaystyle{ \pi }[/math] yields

[math]\displaystyle{ \frac{1}{Y(r,\theta)} \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} \right] = - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

The possible separation constants [math]\displaystyle{ \eta }[/math] will be determined by the free surface condition and the bed condition.

Separation of variables for a free surface

We use separation of variables

We express the potential as

[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]

and then Laplace's equation becomes

[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]

The separation of variables equation for deriving free surface eigenfunctions is as follows:

[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]

subject to the boundary conditions

[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]

and

[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]

We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write

[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]

where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:

[math]\displaystyle{ k\tan\left( kh\right) =-\alpha \, }[/math]

which is the Dispersion Relation for a Free Surface

The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations

[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]

to arrive at the dispersion relation

[math]\displaystyle{ \alpha = k\tanh kh. }[/math]

We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].

Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as

[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]

For the solution of

[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} = k_m^2 Y(r,\theta), }[/math]

another separation will be used,

[math]\displaystyle{ Y(r,\theta) =: R(r) \Theta(\theta). }[/math]

Substituting this into Laplace's equation yields

[math]\displaystyle{ \frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = - \frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d} \theta^2} = \eta^2, }[/math]

where the separation constant [math]\displaystyle{ \eta }[/math] must be an integer, say [math]\displaystyle{ \nu }[/math], in order for the potential to be continuous. [math]\displaystyle{ \Theta (\theta) }[/math] can therefore be expressed as

[math]\displaystyle{ \Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}. }[/math]

We also obtain the following expression

[math]\displaystyle{ r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in \mathbb{Z}. }[/math]

Substituting [math]\displaystyle{ \tilde{r}:=k_m r }[/math] and writing [math]\displaystyle{ \tilde{R} (\tilde{r}) := R(\tilde{r}/k_m) = R(r) }[/math], this can be rewritten as

[math]\displaystyle{ \tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2} + \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}} - (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z}, }[/math]

which is the modified version of Bessel's equation. Substituting back, the general solution is given by

[math]\displaystyle{ R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in \mathbb{N},\ \nu \in \mathbb{Z}, }[/math]

where [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] are the modified Bessel functions of the first and second kind, respectively, of order [math]\displaystyle{ \nu }[/math].

The potential [math]\displaystyle{ \phi }[/math] can thus be expressed in local cylindrical coordinates as

[math]\displaystyle{ \phi (r,\theta,z) = \sum_{m = 0}^{\infty} Z_m(z) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}, }[/math]

where [math]\displaystyle{ Z_m(z) }[/math] is given by equation \eqref{sol_Z_fin}. Substituting [math]\displaystyle{ Z_m }[/math] back as well as noting that [math]\displaystyle{ k_0=-\mathrm{i} k }[/math] yields

[math]\displaystyle{ \phi (r,\theta,z) = F_0\cos(-\mathrm{i} k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu} I_\nu (-\mathrm{i} k r) + E_{0\nu} K_\nu (-\mathrm{i} k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} }[/math]
[math]\displaystyle{ + \sum_{m = 1}^{\infty} F_m\cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

Noting that [math]\displaystyle{ \cos \mathrm{i} x = \cosh x }[/math] is an even function and the relations [math]\displaystyle{ I_\nu(-\mathrm{i} x) = (-\mathrm{i})^{\nu} J_\nu(x) }[/math] where [math]\displaystyle{ J_\nu }[/math] is the Bessel function of the first kind of order [math]\displaystyle{ \nu }[/math] and [math]\displaystyle{ K_\nu (-\mathrm{i} x) = \pi / 2\,\, \mathrm{i}^{\nu+1} H_\nu^{(1)}(x) }[/math] with [math]\displaystyle{ H_\nu^{(1)} }[/math] denoting the Hankel function of the first kind of order [math]\displaystyle{ \nu }[/math], it follows that

[math]\displaystyle{ \phi (r,\theta,z) = F_0\cosh(k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu}' J_\nu (k r) + E_{0\nu}' H_\nu^{(1)} (k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} }[/math]
[math]\displaystyle{ + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu}' I_\nu (k_m r) + E_{m\nu}' K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

However, [math]\displaystyle{ J_\nu }[/math] does not satisfy the Sommerfeld Radiation Condition and neither does [math]\displaystyle{ I_\nu }[/math] since it becomes unbounded for increasing real argument. These two solutions represent incoming waves which will also be required later.

Therefore, the solution of the problem requires [math]\displaystyle{ D_{m\nu}'=0 }[/math] for all [math]\displaystyle{ m,\nu }[/math]. Therefore, the eigenfunction expansion of the water velocity potential in cylindrical outgoing waves with coefficients [math]\displaystyle{ A_{m\nu} }[/math] is given by

[math]\displaystyle{ \phi (r,\theta,z) = \frac{\cosh(k (z+d))}{\cosh kd} \sum_{\nu = - \infty}^{\infty} A_{0\nu} H_\nu^{(1)} (k r) \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} \frac{\cos(k_m(z+d))}{\cos k_m d} \sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

(where we have set the parameters [math]\displaystyle{ F_m }[/math] so that our vertical eigenfunctions are unity at the free surface [math]\displaystyle{ z=0 }[/math]). The two terms describe the propagating and the decaying wavefields respectively.

We can write this expression in compact notation as

[math]\displaystyle{ \phi (r,\theta,z) = \sum_{m = 0}^{\infty} f_m(z) \sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

where

[math]\displaystyle{ f_m(z) = \frac{\cos k_m (z+d)}{\cos k_m d}. }[/math]