Difference between revisions of "Template:Solution for a uniform beam in eigenfunctions"

From WikiWaves
Jump to navigationJump to search
 
Line 1: Line 1:
 
If the beam is uniform the equations can be written as
 
If the beam is uniform the equations can be written as
 
<center>
 
<center>
<math> D \frac{\partial^{4}\zeta}{\partial x^{4}} + m \frac{\partial^{2}\zeta}{\partial t^{2}}=0
+
<math> \beta \frac{\partial^{4}\zeta}{\partial x^{4}} + \gamma \frac{\partial^{2}\zeta}{\partial t^{2}}=0
 
</math> </center>
 
</math> </center>
  
Line 7: Line 7:
 
<center><math>  \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k_n t) +   
 
<center><math>  \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k_n t) +   
 
\sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k_n t)}{k_n}  </math></center>
 
\sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k_n t)}{k_n}  </math></center>
where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>k_m = \lambda^2_n \sqrt{D/m}</math>
+
where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>k_m = \lambda^2_n \sqrt{\beta/\gamma}</math>
 
where <math>\lambda_n</math> are the eigenfunctions.
 
where <math>\lambda_n</math> are the eigenfunctions.
  

Latest revision as of 23:41, 2 July 2009

If the beam is uniform the equations can be written as

[math]\displaystyle{ \beta \frac{\partial^{4}\zeta}{\partial x^{4}} + \gamma \frac{\partial^{2}\zeta}{\partial t^{2}}=0 }[/math]

We can express the deflection as the series

[math]\displaystyle{ \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k_n t) + \sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k_n t)}{k_n} }[/math]

where [math]\displaystyle{ X_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ k_m = \lambda^2_n \sqrt{\beta/\gamma} }[/math] where [math]\displaystyle{ \lambda_n }[/math] are the eigenfunctions.

Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:

[math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
[math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]

Note that we cannot give the plate an initial velocity that contains a rigid body motions which is why the sum starts at [math]\displaystyle{ n=2 }[/math] for time derivative.