Difference between revisions of "Template:Standard linear wave scattering equations without body condition"

From WikiWaves
Jump to navigationJump to search
m
 
Line 1: Line 1:
 
<center><math>
 
<center><math>
\Delta\phi=0, \, -h<z<0,\,\,\,\mathbf{x} \in \Omega
+
\begin{align}
</math></center>
+
\Delta\phi &=0, &-h<z<0,\,\,\mathbf{x} \in \Omega \\
<center><math>
+
\partial_z\phi &= 0, &z=-h, \\
\partial_z\phi = 0, \, z=-h,
+
  \partial_z \phi  &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}},
</math></center>
+
\end{align}
<center><math>
 
  \partial_z \phi  = \alpha \phi,\,z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}},
 
 
</math></center>
 
</math></center>
  
Line 12: Line 10:
 
(note that the last expression can be obtained from combining the expressions:
 
(note that the last expression can be obtained from combining the expressions:
 
<center><math>
 
<center><math>
  \partial_z \phi  = -\mathrm{i} \omega \zeta,\,z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}},
+
\begin{align}
</math></center>
+
  \partial_z \phi  &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\
<center><math>
+
\mathrm{i} \omega \phi  &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}},
\mathrm{i} \omega \phi  = g\zeta,\,z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}},
+
\end{align}
 
</math></center>
 
</math></center>
  
where <math>\alpha = \omega^2/g </math>)
+
where <math>\alpha = \omega^2/g \,</math>)

Latest revision as of 10:40, 6 November 2010

[math]\displaystyle{ \begin{align} \Delta\phi &=0, &-h\lt z\lt 0,\,\,\mathbf{x} \in \Omega \\ \partial_z\phi &= 0, &z=-h, \\ \partial_z \phi &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]


(note that the last expression can be obtained from combining the expressions:

[math]\displaystyle{ \begin{align} \partial_z \phi &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\ \mathrm{i} \omega \phi &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]

where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math])