Difference between revisions of "Traffic Waves"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
= Equations =
+
<math><math>Insert formula here</math></math>= Equations =
  
We consider a single lane of road. We define the following variables
+
We consider a single lane of road, and we measure distance along the road with
 +
the variable <math>x</math> and <math>t</math> is time.  
 +
We define the following variables
 
<center><math>  
 
<center><math>  
 
\begin{matrix}
 
\begin{matrix}
&\rho &: &\mbox{car density (cars/km)} \\
+
&\rho(x,t) &: &\mbox{car density (cars/km)} \\
 
& v(\rho)        &: &\mbox{car velocity (km/hour)} \\
 
& v(\rho)        &: &\mbox{car velocity (km/hour)} \\
& q =\rho v        &: &\mbox{car flow rate (cars/hour)}  \\
+
& q(x,t) =\rho v        &: &\mbox{car flow rate (cars/hour)}  \\
 
\end{matrix}  
 
\end{matrix}  
 
</math></center>
 
</math></center>
Line 13: Line 15:
 
in and out must be balanced by the change in density. This means that
 
in and out must be balanced by the change in density. This means that
 
<center><math>  
 
<center><math>  
\begin{matrix}
+
\frac{\partial}{\partial t} \int_{x_1}^{x_2} \rho(x,t) dx = q(x_2,t) - q(x_1,t)
&\rho &: &\mbox{car density (cars/km)} \\
+
</math></center>
& v(\rho)         &: &\mbox{car velocity (km/hour)} \\
+
We now consider continuous densities (which is obviously an approximation) and
& q =\rho v        &: &\mbox{car flow rate (cars/hour)}  \\
+
set <math>x_2 = x_1 + \Delta x</math> and we obtain
\end{matrix} </math></center>
+
<center><math>
 +
\frac{\partial}{\partial t} \rho(x_1,t) = \frac{q(x_2,t) - q(x_1,t)}{\Delta x}
 +
</math></center>
 +
and if we take the limit as <math>\Delta x \to 0</math> we obtain the differential equation
 +
<center><math>
 +
\frac{\partial \rho}{\partial t= \frac{\partial q}{\partial x}
 +
</math></center>
  
 
[[Category:789]]
 
[[Category:789]]

Revision as of 23:15, 20 July 2008

[math]\displaystyle{ \lt math\gt Insert formula here }[/math]</math>= Equations =

We consider a single lane of road, and we measure distance along the road with the variable [math]\displaystyle{ x }[/math] and [math]\displaystyle{ t }[/math] is time. We define the following variables

[math]\displaystyle{ \begin{matrix} &\rho(x,t) &: &\mbox{car density (cars/km)} \\ & v(\rho) &: &\mbox{car velocity (km/hour)} \\ & q(x,t) =\rho v &: &\mbox{car flow rate (cars/hour)} \\ \end{matrix} }[/math]

If we consider a finite length of road [math]\displaystyle{ x_1\leq x \leq x_2 }[/math] then the net flow of cars in and out must be balanced by the change in density. This means that

[math]\displaystyle{ \frac{\partial}{\partial t} \int_{x_1}^{x_2} \rho(x,t) dx = q(x_2,t) - q(x_1,t) }[/math]

We now consider continuous densities (which is obviously an approximation) and set [math]\displaystyle{ x_2 = x_1 + \Delta x }[/math] and we obtain

[math]\displaystyle{ \frac{\partial}{\partial t} \rho(x_1,t) = \frac{q(x_2,t) - q(x_1,t)}{\Delta x} }[/math]

and if we take the limit as [math]\displaystyle{ \Delta x \to 0 }[/math] we obtain the differential equation

[math]\displaystyle{ \frac{\partial \rho}{\partial t} = \frac{\partial q}{\partial x} }[/math]