Difference between revisions of "Wave Energy Density and Flux"

From WikiWaves
Jump to navigationJump to search
Line 7: Line 7:
 
Mean energy over unit horizongtal surface area <math> S \, </math> :
 
Mean energy over unit horizongtal surface area <math> S \, </math> :
  
<center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\xi(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} </math></center>
+
<center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\xi(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\xi(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \xi^2 - H^2 ) } </math></center>

Revision as of 08:59, 26 January 2007

Energy Density, Energy Flux and Momentum Flux of Surface Waves

[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :

[math]\displaystyle{ \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV }[/math]

Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :

[math]\displaystyle{ \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\xi(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\xi(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \xi^2 - H^2 ) } }[/math]