Wave Forces on a Body

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Wave Forces on a Body

[math]\displaystyle{ U = \omega A \, }[/math]
[math]\displaystyle{ R_e = \frac{U\ell}{\nu} = \frac{\omega A \ell}{\nu} \, }[/math]
[math]\displaystyle{ K_C = \frac{UT}{\ell} = \frac{A\omega T}{\ell} = 2 \pi \frac{A}{\ell} \, }[/math]
[math]\displaystyle{ C_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], [math]\displaystyle{ R_e \, }[/math], [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], roughness, [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math]
Wave Diffraction
steepness parameter

Type of Forces

1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].

  • Form drag [math]\displaystyle{ ( C_D ) \, }[/math]

Associated primarily with flow separation -normal stresses.

  • Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]
Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \, }[/math] [math]\displaystyle{ \vec{F} \sim \iint \tau_w \, }[/math] [math]\displaystyle{ dS \, }[/math].
body
(wetted surface)

2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.

Forces arising from potential flow wave theory,

[math]\displaystyle{ \vec{F} = \iint p \hat{n} \, }[/math] [math]\displaystyle{ dS \, }[/math], where [math]\displaystyle{ \ p = - \rho \left( \frac{\partial\phi}{\partial t} + g y \right. \, }[/math] [math]\displaystyle{ + \left. \underbrace{ \frac{1}{2} \left| \nabla \phi \right|^2} \right) \, }[/math]
body [math]\displaystyle{ =0 \, }[/math] , for linear theory,
(wetted surface) small amplitude waves

For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to

[math]\displaystyle{ \phi = \, }[/math] [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_R} \, }[/math]
Incident wave Scattered wave Radiated wave
potential [math]\displaystyle{ (a) \, }[/math] potential [math]\displaystyle{ (b.1) \, }[/math] potential [math]\displaystyle{ (b.2) \, }[/math]
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ g y \, }[/math]

(a) Incident wave potential

  • Froude-Krylov Force approximation When [math]\displaystyle{ \ell \ll \lambda \, }[/math], the incident wave field is not significantly modified by the presence of the body, therefore ignore [math]\displaystyle{ \phi_D \, }[/math] and [math]\displaystyle{ \phi_R \, }[/math]. Froude-Krylov approximation:
[math]\displaystyle{ \left. \begin{matrix} & \phi \approx \phi_I \\ & p \approx - \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right) \end{matrix} \right\} }[/math] [math]\displaystyle{ \Rightarrow \vec{F}_{FK} = \, }[/math] [math]\displaystyle{ \iint \underbrace{- \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right)} }[/math] [math]\displaystyle{ \hat{n} dS \leftarrow \, }[/math] can calculate knowing (incident)
wave kinematics (and body geometry)
body [math]\displaystyle{ . \qquad \equiv p_I \, }[/math]
surface
  • Mathematical approximation After applying the divergence theorem, the [math]\displaystyle{ \vec{F}_{FK} \, }[/math] can be rewritten as
[math]\displaystyle{ \vec{F}_{FK} \, }[/math] [math]\displaystyle{ = - \iint p_I \hat{n} \, }[/math] [math]\displaystyle{ dS = - \iiint \nabla p_I d\forall \, }[/math]
body
surface
body
volume

If the body dimensions are very small comparable to the wave length, we can assume that [math]\displaystyle{ \nabla_{p_I} \, }[/math] is approximately constant through the body volume [math]\displaystyle{ \forall \, }[/math] and 'pull' the [math]\displaystyle{ \nabla_{p_I} \, }[/math] out of the integral. Thus, the [math]\displaystyle{ \vec{F}_{FK} \, }[/math] can be approximated as

[math]\displaystyle{ \vec{F}_{FK} \cong \left( - \nabla_{p_I} \right) \left. \frac{}{} \right| \, }[/math] at body [math]\displaystyle{ \iiint d\forall = \, }[/math] [math]\displaystyle{ \underbrace{\forall} \, }[/math] [math]\displaystyle{ \left( - \nabla_{p_I} \right) \left. \frac{}{} \right| \, }[/math] at body
center body
volume
body
volume
center

The last relation is particularly useful for small bodies of non-trivial geometry for 13.021, that is all bodies that do not have a rectangular cross section.

(b) Diffraction and Radiation Forces

(b.1) Diffraction or scattering force When [math]\displaystyle{ \ell \not\ll \lambda \, }[/math], the wave field near the body will be affected even if the body is stationary, so that no-flux B.C. is satisfied.

[math]\displaystyle{ \vec{F}_D \ = \ }[/math] [math]\displaystyle{ \iint - \rho \left( \frac{\partial\phi_D}{\partial t} \right) \hat{n} dS }[/math]
body surface

(b.2) Radiation Force -added mass and damping coefficient Even in the absence of an incident wave, a body in motion creates waves and hence inertial wave forces.

[math]\displaystyle{ \vec{F}_R = \, }[/math] [math]\displaystyle{ \iint - \rho \left( \frac{\partial\phi_R}{\partial t} \right) \hat{n} dS = - }[/math] [math]\displaystyle{ \underbrace{m_{ij}} \, }[/math] [math]\displaystyle{ \dot{U}_j \ - \, }[/math] [math]\displaystyle{ \underbrace{d_{ij}} \, }[/math] [math]\displaystyle{ U_j \, }[/math]
body surface added mass wave radiation damping

Important parameters

[math]\displaystyle{ (1) K_C = \frac{UT}{\ell} = 2 \pi \frac{A}{\ell} \, }[/math] [math]\displaystyle{ \left. \begin{matrix} \\ \\ \\ \\ \\ \\ \end{matrix} \right\} \, }[/math] Interrelated through maximum wave steepness
[math]\displaystyle{ \frac{A}{\lambda} \leq 0.07 \, }[/math]
(2)diffraction parameter [math]\displaystyle{ \frac{\ell}{\lambda} \, }[/math] [math]\displaystyle{ \left( \frac{A}{\ell} \right) \left( \frac{\ell}{\lambda} \right) \leq 0.07 \, }[/math]
  • If [math]\displaystyle{ K_c \leq 1 \, }[/math]: no appreciable flow separation, viscous effect confined to boundary layer (hence small), solve problem via potential theory. In addition, depending on the value of the ratio [math]\displaystyle{ \frac{\ell}{\lambda} \, }[/math],
  • If [math]\displaystyle{ \frac{\ell}{\lambda} \ll 1 \, }[/math], ignore diffraction , wave effects in radiation problem (i.e., [math]\displaystyle{ d_{ij} \approx 0, \ m_{ij} \approx m_{ij} \, }[/math] infinite fluid added mass). F-K approximation might be used, calculate [math]\displaystyle{ \vec{F}_{FK} \, }[/math].
  • If [math]\displaystyle{ \frac{\ell}{\lambda} \gg 1/5 \, }[/math], must consider wave diffraction, radiation [math]\displaystyle{ \left( \frac{A}{\ell} \leq \frac{0.07}{\ell / \lambda} \leq 0.035 \right) \, }[/math].
  • If [math]\displaystyle{ K_C \gg 1 \, }[/math]: separation important, viscous forces can not be neglected. Further on if [math]\displaystyle{ \frac{\ell}{\lambda} \leq \frac{0.07}{A/\ell} \, }[/math] so [math]\displaystyle{ \frac{\ell}{\lambda} \ll 1 \, }[/math] ignore diffraction, i.e., the Froude-Krylov approximation is valid.
[math]\displaystyle{ F = \frac{1}{2} \rho \ell^2 \, }[/math] [math]\displaystyle{ \underbrace{U(t)} \, }[/math] [math]\displaystyle{ \left| U(t) \right| C_D \left( R_e \right) \, }[/math]
relative velocity
  • Intermediate [math]\displaystyle{ K_c - \, }[/math] both viscous and inertial effects important, use Morrison's formula.
[math]\displaystyle{ F= \frac{1}{2} \rho \ell^2 U(t) \left| U(t) \right| C_D \left( R_e \right) + \rho \ell^3 \dot{U} C_m \left( R_e, K_C \right) }[/math]
  • Summary

I. Use: [math]\displaystyle{ C D \, }[/math] and [math]\displaystyle{ F - K \, }[/math] approximation.

II. Use: [math]\displaystyle{ C F \, }[/math] and [math]\displaystyle{ F - K \, }[/math] approximation.

III. [math]\displaystyle{ C D \, }[/math] is not important and [math]\displaystyle{ F - K \, }[/math] approximation is not valid.



This article is based on the MIT open course notes and the original article can be found here.

Marine Hydrodynamics