Difference between revisions of "Wavemaker Theory"

From WikiWaves
Jump to navigationJump to search
Line 29: Line 29:
 
<center><math> \omega^2 = gK \tanh KH. \,</math></center>
 
<center><math> \omega^2 = gK \tanh KH. \,</math></center>
  
The second component potential <math>\psi\,</math> is by definition a decaying disturbance as <math> X \to \infty \, </math> and otherwise astisfies the following boundary value problem:
+
The second component potential <math>\psi\,</math> is by definition a decaying disturbance as <math> X \to \infty \, </math> and otherwise satisfies the following boundary value problem:
  
 
<center><math> \begin{cases}
 
<center><math> \begin{cases}
Line 38: Line 38:
 
\end{cases}
 
\end{cases}
 
</math></center>
 
</math></center>
 +
 +
The condition on the wavemaker <math> (X=0) \, </math> is yet to be enforced.
 +
 +
Note that unlike <math> \phi_\omega, \psi </math> is not representing a propagating wave down the tank so it is called a non-wavelike mode. Such modes do exist as will be shown below. On the wavemaker <math> (X=0) \, </math> the horizontal velocity due to <math> \phi_\omega\, </math> and that due to <math> \psi\,</math> must sum to the forcing velocity due to <math> \xi(t) \, </math>.
 +
 +
Noting that <math> \phi_\omega \approx e^{-iKX} \cosh K(Z+H) \, </math> we will try <math> \phi \approx e^{-\lambda x} \cos \lambda (Z+H} \,</math>. Its conjugate which satisfies the condition of vanishing value as <math> X \to \infty </math> for <math> \lambda > 0 </math>.
 +
 +
<u> Laplace </u>:

Revision as of 10:01, 19 February 2007

A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement

[math]\displaystyle{ \xi (t) = \mathfrak{Re} \left \{ \Pi e^{i\omega t} \right \} }[/math]

Where [math]\displaystyle{ \Pi\, }[/math] is assumed known and real. This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, \Pi \, }[/math] and [math]\displaystyle{ H \, }[/math].

Other types of wavemaker modes may be treated similarly.

In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form

[math]\displaystyle{ \xi(t) = \mathfrak{Re} \left \{ \Pi (Z) e^{i\omega t} \right \} }[/math]

Where [math]\displaystyle{ \Pi(Z) \, }[/math] is a known function of [math]\displaystyle{ Z \, }[/math].

Let the total velocity potential be:

[math]\displaystyle{ \Phi = \mathfrak{Re} \left \{ \phi e^{i\omega t} \right \} }[/math]

where

[math]\displaystyle{ \phi = \phi_\omega \ + \psi }[/math]

The first term is a velocity potential that represents a plane progressive regular wave down the tank with amplitude [math]\displaystyle{ A \, }[/math], yet unknown. Thus:

[math]\displaystyle{ \phi_\omega = \frac{igA}{\omega} \frac{\cosh K (Z+H)}{\cosh KH} e^{-iKX + i\omega t} }[/math]

with:

[math]\displaystyle{ \omega^2 = gK \tanh KH. \, }[/math]

The second component potential [math]\displaystyle{ \psi\, }[/math] is by definition a decaying disturbance as [math]\displaystyle{ X \to \infty \, }[/math] and otherwise satisfies the following boundary value problem:

[math]\displaystyle{ \begin{cases} \nabla^2 \psi = \psi_XX + \psi_ZZ = 0, -H \lt Z \lt 0 \\ \psi_Z - \frac{\omega^2}{g} \psi = 0, Z=0 \\ \psi_Z = 0, Z=-H \\ \psi \to 0, X \to \infty \end{cases} }[/math]

The condition on the wavemaker [math]\displaystyle{ (X=0) \, }[/math] is yet to be enforced.

Note that unlike [math]\displaystyle{ \phi_\omega, \psi }[/math] is not representing a propagating wave down the tank so it is called a non-wavelike mode. Such modes do exist as will be shown below. On the wavemaker [math]\displaystyle{ (X=0) \, }[/math] the horizontal velocity due to [math]\displaystyle{ \phi_\omega\, }[/math] and that due to [math]\displaystyle{ \psi\, }[/math] must sum to the forcing velocity due to [math]\displaystyle{ \xi(t) \, }[/math].

Noting that [math]\displaystyle{ \phi_\omega \approx e^{-iKX} \cosh K(Z+H) \, }[/math] we will try [math]\displaystyle{ \phi \approx e^{-\lambda x} \cos \lambda (Z+H} \, }[/math]. Its conjugate which satisfies the condition of vanishing value as [math]\displaystyle{ X \to \infty }[/math] for [math]\displaystyle{ \lambda \gt 0 }[/math].

Laplace :