Difference between revisions of "Wavemaker Theory"

From WikiWaves
Jump to navigationJump to search
Line 15: Line 15:
  
 
In general, the wavemaker displacement at <math> X=0\, </math> may be written in the form
 
In general, the wavemaker displacement at <math> X=0\, </math> may be written in the form
<center><math> \xi(t) = \mathfrak{Re} \left \{ \Pi (Z) e^{i\omega t} \right \} </math></center>
+
<center><math> \xi(t) = \mathfrak{Re} \left \{ f (z) e^{i\omega t} \right \} </math></center>
where <math> \Pi(Z) \, </math> is a known function of <math> Z \, </math>. The standard  
+
where <math> f(z) \, </math> is a known function of <math> z \, </math>. The standard  
 
[[Linear and Second-Order Wave Theory| linear equations]] apply.  
 
[[Linear and Second-Order Wave Theory| linear equations]] apply.  
 
Let the total velocity potential be
 
Let the total velocity potential be
<center><math> \Phi = \mathfrak{Re} \left \{ \phi e^{i\omega t} \right \} </math></center>
+
<center><math> \Phi(x,z,t) = \mathfrak{Re} \left \{ \phi(x,z) e^{i\omega t} \right \} </math></center>.
where
+
This gives us a [[Frequency Domain Problem]].
<center><math> \phi = \phi_\omega \ + \psi </math></center>
+
The water is assumed to have
 
+
constant finite depth <math>H</math> and the <math>z</math>-direction points vertically
The first term is a velocity potential that represents a [[Linear Plane Progressive Regular Waves|Linear Plane Progressive Regular Wave]] down the tank with amplitude <math> A \, </math>, yet unknown. Thus
+
upward with the water surface at <math>z=0</math> and the sea floor at <math>z=-H</math>. The
<center><math> \phi_\omega = \frac{igA}{\omega} \frac{\cosh K (Z+H)}{\cosh KH} e^{-iKX + i\omega t} </math></center>
+
boundary value problem can therefore be expressed as
with <math> \omega^2 = gK \tanh KH. \,</math> (the [[Dispersion Relation for a Free Surface]]).
+
<center>
 +
<math>
 +
\Delta\phi=0, \,\, -H<z<0,
 +
</math>
 +
</center>
 +
<center>
 +
<math>
 +
\phi_{z}=0, \,\, z=-H,
 +
</math>
 +
</center>
 +
<center><math>
 +
\partial_z\phi=\alpha\phi, \,\, z=0,\,x<0,
 +
</math></center>
 +
<center>
 +
<math>
 +
\partial_x\phi_{x}=f(z), \,\,x=0.
 +
</math>
 +
</center>
 +
We
 +
must also apply the [[Sommerfeld Radiation Condition]]
 +
as <math>x\rightarrow\infty</math>. This essentially implies
 +
that the only wave at infinity is propagating away.
  
== Evanescent modes and separation of variables ==  
+
== Separation of variables ==  
  
The second component potential <math>\psi\,</math> is by definition a decaying disturbance as <math> X \to \infty \, </math> and otherwise satisfies the following boundary value problem
+
We now separate variables and write the potential as
<center><math> \begin{cases}
+
<center>
  \nabla^2 \psi = \psi_{XX} + \psi_{ZZ} = 0, -H < Z < 0 \\
+
<math>
  \psi_Z - \frac{\omega^2}{g} \psi = 0, Z=0 \\
+
\phi(x,z)=\zeta(z)\rho(x)
  \psi_Z = 0, Z=-H \\
+
</math>
  \psi \to 0, X \to \infty
+
</center>
\end{cases}
+
Applying Laplace's equation we obtain
 +
<center>
 +
<math>
 +
\zeta_{zz}+\k^{2}\zeta=0.
 +
</math>
 +
</center>
 +
We then use the boundary condition at <math>z=-H</math> to write
 +
<center>
 +
<math>
 +
\zeta=\cos k(z+H)
 +
</math>
 +
</center>
 +
The boundary condition at the free surface (<math>z=0</math>) is
 +
<center><math>
 +
k\tan\left(  kH\right)  =-\alpha,\quad x<0
 
</math></center>
 
</math></center>
The condition on the wavemaker <math> (X=0) \, </math> is yet to be enforced.
+
which is the [[Dispersion Relation for a Free Surface]]
Note that unlike <math> \phi_\omega,\, \psi \, </math> does not representing a propagating wave down the tank so it is called a non-wavelike (evanescent) mode. Such modes do exist as will be shown below. On the wavemaker <math> (X=0) \, </math> the horizontal velocity due to <math> \phi_\omega\, </math> and that due to <math> \psi\,</math> must sum to the forcing velocity due to <math> \xi(t) \, </math>.
+
We denote the
 
+
positive imaginary solution of this equation by <math>k_{0}</math> and
When we solve Laplace's equation by [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] and apply the bottom boundary conditions we obtain solutions of the form  <math> e^{-iKX} \cosh K(Z+H) </math> (which represent propagating waves and of the form <math> \cos \lambda (Z+H) \,</math>. Not that this solution satisfies the condition of vanishing value as <math> X \to \infty </math> provided that <math> \lambda > 0 \,</math>.
+
the positive real solutions by <math>k_{m}</math>, <math>m\geq1</math>. We define
These solutions satisfy Laplace's equation  <math> \psi_{XX} + \psi_{ZZ} = 0, \, </math> for all <math> \lambda</math> and the seafloor condition </u>: <math> \psi_Z = 0, Z=-H.</math>
+
<center>
The free-surface condition implies that
+
<math>
<center><math> \psi_Z - \frac{\omega^2}{g} \psi = 0 \qquad \qquad \Longrightarrow \quad - \lambda \sin \lambda H - \frac{\omega^2}{g} \cos \lambda H = 0 </math></center>
+
\phi_{m}\left(  z\right)  =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0
<center><math> \Longrightarrow \quad \lambda \tan \lambda H = - \nu \equiv \frac{\omega^2}{g} </math></center>
+
</math>
So for the non-wavelike modes <math> \psi, \lambda \,</math> must satisfy the [[Dispersion Relation for a Free Surface]],
+
</center>
<center><math> \lambda \tan \lambda H = - \nu = - \frac{\omega^2}{g} < 0 </math></center>
+
as the vertical eigenfunction of the potential in the open
 
+
water region and
For positive values of <math> \lambda \, </math> so that <math> e^{-\lambda X} \to 0, X \to + \infty \, </math>.
+
<center>
Values of <math>\lambda_i \, </math> satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation
+
<math>
<center><math> \tan \omega = - \frac{\nu}{\omega}, \omega = \lambda H \, </math></center>
+
\psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+H),\quad
Solutions <math> \omega_i, i = 1, 2, \cdots \, </math> exist as shown above with <math> \omega_i \sim i \pi \, </math> for large <math> i \, </math>. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution <math> K\, </math> is given by the dispersion relation:
+
m\geq 0
<center><math> \frac{\omega^2 H}{g} = KH \tan KH. \, </math></center>
+
</math>
It can easily be shown that setting <math> K = i \lambda \, </math>, the dispersion relation of the non-wavelike nodes follows. In summary the purely imaginary roots of the surface wave dispersion relation and its single real positive root enter the solution of the wavemaker problem.
+
</center>
 
+
as the vertical eigenfunction of the potential in the dock
 +
covered region. For later reference, we note that:
 +
<center>
 +
<math>
 +
\int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn}
 +
</math>
 +
</center>
 +
where
 +
<center>
 +
<math>
 +
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos
 +
^{2}k_{m}H}\right)
 +
</math>
 +
</center>
 +
and
 
== Orthogonal eigenfunctions==  
 
== Orthogonal eigenfunctions==  
  

Revision as of 08:14, 29 February 2008

Introduction

Wavemaker

We will derive the potential in a two-dimensional wavetank due the motion of the wavemaker. The method is based on the Eigenfunction Matching Method. A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement

[math]\displaystyle{ \xi (t) = \mathfrak{Re} \left \{ f(z) e^{i\omega t} \right \} }[/math]

where [math]\displaystyle{ f(z) }[/math] is assumed known. Since the time [math]\displaystyle{ t=0 }[/math] is arbitrary we can assume that [math]\displaystyle{ f(z) }[/math] is real but this is not necessary. Because the oscillations are small the linear equations apply (which will be given formally below). This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, f(z) \, }[/math] and [math]\displaystyle{ H \, }[/math]. Time-dependent wavemaker theories can also be developed.

Expansion of the solution

In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form

[math]\displaystyle{ \xi(t) = \mathfrak{Re} \left \{ f (z) e^{i\omega t} \right \} }[/math]

where [math]\displaystyle{ f(z) \, }[/math] is a known function of [math]\displaystyle{ z \, }[/math]. The standard linear equations apply. Let the total velocity potential be

[math]\displaystyle{ \Phi(x,z,t) = \mathfrak{Re} \left \{ \phi(x,z) e^{i\omega t} \right \} }[/math]

.

This gives us a Frequency Domain Problem. The water is assumed to have constant finite depth [math]\displaystyle{ H }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-H }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -H\lt z\lt 0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-H, }[/math]

[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0,\,x\lt 0, }[/math]

[math]\displaystyle{ \partial_x\phi_{x}=f(z), \,\,x=0. }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ x\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away.

Separation of variables

We now separate variables and write the potential as

[math]\displaystyle{ \phi(x,z)=\zeta(z)\rho(x) }[/math]

Applying Laplace's equation we obtain

[math]\displaystyle{ \zeta_{zz}+\k^{2}\zeta=0. }[/math]

We then use the boundary condition at [math]\displaystyle{ z=-H }[/math] to write

[math]\displaystyle{ \zeta=\cos k(z+H) }[/math]

The boundary condition at the free surface ([math]\displaystyle{ z=0 }[/math]) is

[math]\displaystyle{ k\tan\left( kH\right) =-\alpha,\quad x\lt 0 }[/math]

which is the Dispersion Relation for a Free Surface We denote the positive imaginary solution of this equation by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. We define

[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region and

[math]\displaystyle{ \psi_{m}\left( z\right) = \cos\kappa_{m}(z+H),\quad m\geq 0 }[/math]

as the vertical eigenfunction of the potential in the dock covered region. For later reference, we note that:

[math]\displaystyle{ \int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos ^{2}k_{m}H}\right) }[/math]

and

Orthogonal eigenfunctions

The solution of the for Dispersion Relation for a Free Surface leads to an infinite series of vertical eigenfunctions from Sturm-Liouville theory. This theory also shows that the eigenfunctions are orthogonal and we may define the following orthogonal eigenfunctions in the vertical direction [math]\displaystyle{ Z \, }[/math]:

[math]\displaystyle{ f_0 (Z) = \frac{\sqrt{2} \cosh K ( Z + H )}{{ (H + \frac{1}{v} \sinh^2 KH )}^{1/2}} }[/math]
[math]\displaystyle{ f_n (Z) = \frac{\sqrt{2} \cosh \lambda_n ( Z + H )}{(H + \frac{1}{v} \sinh^2 \lambda_n H )}, \qquad n = 1, 2, \cdots }[/math]

Selected to satisfy:

[math]\displaystyle{ \begin{cases} \int_{-H}^0 f_0^2 (Z) dZ = \int_{-H}^0 f_n^2 (Z) dZ = 1 \\ \int_{-H}^0 f_m^2 (Z) f_n (Z) dZ = 0, \quad m \ne n \end{cases} }[/math]

So the wavemaker velocity potentials [math]\displaystyle{ \phi_w \, }[/math] and [math]\displaystyle{ \psi\, }[/math] can be expressed simply in terms of their respective eigen modes:

[math]\displaystyle{ \phi_w = a_0 f_0 (Z) e^{-iKX} }[/math]
[math]\displaystyle{ \psi = \sum_{n=1}^{\infty} a_n f_n (Z) e^{-\lambda_n X} }[/math]

and:

[math]\displaystyle{ \Phi = \mathfrak{Re} \left \{ ( \phi_w + \psi)_ e^{i\omega t} \right \} }[/math]

On [math]\displaystyle{ X=0 \, }[/math]:

[math]\displaystyle{ \Phi_X = \mathfrak{Re} \left \{ \partial_X( \phi_W + \psi){X=0} e^{i\omega t} \right \} }[/math]

and

[math]\displaystyle{ \frac{d\xi}{dt} = \mathfrak{Re} \left \{ \Pi (Z) i \omega e^{i\omega t} \right \} }[/math]

Or:

[math]\displaystyle{ \frac{\partial}{\partial X} (\phi_W + \psi)_{X=0} = \Pi (Z) i \omega }[/math]
[math]\displaystyle{ \left. \frac{\partial\phi_W}{\partial X} \right |_{X=0} = a_0 ( -iK) f_0 (Z) }[/math]
[math]\displaystyle{ \left. \frac{\partial\psi}{\partial X} \right |_{X=0} = \sum_{n=1}^{\infty} a_n ( -\lambda_n) f_n (Z) }[/math]

It follows that:

[math]\displaystyle{ - i K a_0 f_0 (Z) + \sum_{n=1}^{\infty} a_n (- \lambda_n) f_n (Z) = i \omega \Pi (Z) }[/math]

Far Field Wave

One of the primary objecives of wavemaker theory is to determine [math]\displaystyle{ a_0 \, }[/math] (or the far-field wave amplitude [math]\displaystyle{ A \, }[/math] ) in terms of [math]\displaystyle{ \Pi (Z) \, }[/math]. Multiplying both sides by [math]\displaystyle{ f_0 (Z) \, }[/math], integrating from [math]\displaystyle{ - H \to 0 \, }[/math] and using orthogonality we obtain:

[math]\displaystyle{ - i K a_0 = i \omega \int_{-H}^0 dZ f_0 (Z) \Pi (Z) }[/math]
[math]\displaystyle{ \Rightarrow \quad a_0 = - \frac{\omega}{K} \int_{-H}^0 dZ f_0 (Z) \Pi (Z) }[/math]

The far-field wave component representing progagating waves is given by:

[math]\displaystyle{ \phi_w = a_0 \frac{\sqrt{2} \cosh K (Z+H)}{{\left( H+\frac{1}{v} \sinh^2 KH \right)}^{1/2}} e^{-iKX} }[/math]
[math]\displaystyle{ \equiv \frac{igA}{\omega} \frac{\cosh K (Z +H)}{\cosh KH} e^{-iKX} }[/math]

Plugging in [math]\displaystyle{ a_0\, }[/math] and solving for [math]\displaystyle{ A \, }[/math] we obtain the complex amplitude of the propagating wave at infinity, namely modulus and phase, in terms of the wave maker displacement [math]\displaystyle{ \Pi (Z) \, }[/math] and the other flow parameters.

For what type of [math]\displaystyle{ \Pi(Z) \, }[/math] are the non-wavelike modes [math]\displaystyle{ \psi \equiv 0 \, }[/math]? It is easy to verify by virtue of orthogonality that:

[math]\displaystyle{ \Pi(Z) \ \sim \ f_0 (Z) }[/math]

Unfortunately this is not a "practical" displacement since [math]\displaystyle{ f_0 (Z,K) \, }[/math] depends on [math]\displaystyle{ K\, }[/math], thus on [math]\displaystyle{ \omega\, }[/math]. So one would need to build a flexible paddle!



This article is based on the MIT open course notes and the original article can be found here

Ocean Wave Interaction with Ships and Offshore Energy Systems