Difference between revisions of "Wiener-Hopf Elastic Plate Solution"

From WikiWaves
Jump to navigationJump to search
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
= Introduction =
+
{{incomplete pages}}
 +
 
 +
== Introduction ==
  
 
We present here the [[:Category:Wiener-Hopf|Wiener-Hopf]] solution to the problem of a  
 
We present here the [[:Category:Wiener-Hopf|Wiener-Hopf]] solution to the problem of a  
Line 6: Line 8:
 
has been well studied and the first solution was by [[Evans and Davies 1968]]  
 
has been well studied and the first solution was by [[Evans and Davies 1968]]  
 
but they did not actually develop the method sufficiently to be able to calculate the solution.  
 
but they did not actually develop the method sufficiently to be able to calculate the solution.  
A solution was also developed by [[Balmforth and Craster 1999]] and by [[Tkacheva 2004]]
+
A solution was also developed by [[Balmforth and Craster 1999]] and by [[Tkacheva 2004]].
 +
 
 +
A simpler problem is the [[Wiener-Hopf Solution for a Semi-Infinite Dock]]
  
 
The theory is described in [[:Category:Wiener-Hopf|Wiener-Hopf]].
 
The theory is described in [[:Category:Wiener-Hopf|Wiener-Hopf]].
  
= Elastic Plate =
+
== Elastic plate ==
  
 
We imagine two semi-infinite [[:category:Floating Elastic Plate|Floating Elastic Plates]]
 
We imagine two semi-infinite [[:category:Floating Elastic Plate|Floating Elastic Plates]]
Line 34: Line 38:
 
<center><math>
 
<center><math>
 
\Phi^{-}\left(  \alpha,z\right)  =\int_{-\infty}^{0}\phi\left(  x,z\right)
 
\Phi^{-}\left(  \alpha,z\right)  =\int_{-\infty}^{0}\phi\left(  x,z\right)
e^{\mathrm{i}\alpha x}dx
+
e^{\mathrm{i}\alpha x}\mathrm{d}x
 
</math></center>
 
</math></center>
 
and
 
and
Line 40: Line 44:
 
\Phi^{+}\left(  \alpha,z\right)
 
\Phi^{+}\left(  \alpha,z\right)
 
=\int_{0}^{\infty}\phi\left(  x,z\right)  e^{\mathrm{i}\alpha
 
=\int_{0}^{\infty}\phi\left(  x,z\right)  e^{\mathrm{i}\alpha
x}dx.  
+
x}\mathrm{d}x.  
 
</math></center>
 
</math></center>
 
Notice that the superscript `<math>+</math>' and `<math>-</math>' correspond to the integral domain.
 
Notice that the superscript `<math>+</math>' and `<math>-</math>' correspond to the integral domain.
Line 69: Line 73:
 
transforms are regular and are able to calculate the inverse transform.
 
transforms are regular and are able to calculate the inverse transform.
  
=Weierstrass's factor theorem =
+
==Weierstrass's factor theorem ==
  
 
As mentioned above, we will require splitting a ratio of two functions of a
 
As mentioned above, we will require splitting a ratio of two functions of a
Line 82: Line 86:
 
\alpha\right)  </math>, i.e.,
 
\alpha\right)  </math>, i.e.,
 
<center><math>
 
<center><math>
\frac{d\log H\left(  \alpha\right)  }{d\alpha}  =\frac{1}{H\left(
+
\frac{\mathrm{d}\log H\left(  \alpha\right)  }{\mathrm{d}\alpha}  =\frac{1}{H\left(
\alpha\right)  }\frac{dH\left(  \alpha\right)  }{d\alpha}
+
\alpha\right)  }\frac{\mathrm{d}H\left(  \alpha\right)  }{\mathrm{d}\alpha}
  =\frac{d\log H\left(  0\right)  }{d\alpha}+\sum_{n=0}^{\infty}\left[
+
  =\frac{\mathrm{d}\log H\left(  0\right)  }{\mathrm{d}\alpha}+\sum_{n=0}^{\infty}\left[
 
\frac{1}{\alpha-a_{n}}+\frac{1}{a_{n}}\right]  .
 
\frac{1}{\alpha-a_{n}}+\frac{1}{a_{n}}\right]  .
 
</math></center>
 
</math></center>
 
Integrating both sides in <math>\left[  0,\alpha\right]  </math> we have
 
Integrating both sides in <math>\left[  0,\alpha\right]  </math> we have
 
<center><math>
 
<center><math>
\log H\left(  \alpha\right)  =\log H\left(  0\right)  +\alpha\frac{d\log
+
\log H\left(  \alpha\right)  =\log H\left(  0\right)  +\alpha\frac{\mathrm{d}\log
H\left(  0\right)  }{d\alpha}+\sum_{n=0}^{\infty}\left[  \log\left(
+
H\left(  0\right)  }{\mathrm{d}\alpha}+\sum_{n=0}^{\infty}\left[  \log\left(
 
1-\frac{\alpha}{a_{n}}\right)  +\frac{\alpha}{a_{n}}\right]  .
 
1-\frac{\alpha}{a_{n}}\right)  +\frac{\alpha}{a_{n}}\right]  .
 
</math></center>
 
</math></center>
 
Therefore, the expression for <math>H\left(  \alpha\right)  </math> is
 
Therefore, the expression for <math>H\left(  \alpha\right)  </math> is
 
<center><math>
 
<center><math>
H\left(  \alpha\right)  =H\left(  0\right)  \exp\left[  \alpha\frac{d\log
+
H\left(  \alpha\right)  =H\left(  0\right)  \exp\left[  \alpha\frac{\mathrm{d}\log
H\left(  0\right)  }{d\alpha}\right]  \prod_{n=0}^{\infty}\left(
+
H\left(  0\right)  }{\mathrm{d}\alpha}\right]  \prod_{n=0}^{\infty}\left(
 
1-\frac{\alpha}{a_{n}}\right)  e^{\alpha/a_{n}}.
 
1-\frac{\alpha}{a_{n}}\right)  e^{\alpha/a_{n}}.
 
</math></center>
 
</math></center>
  
If <math>H\left(  \alpha\right)  </math> is even, then <math>dH\left(  0\right)  /d\alpha=0</math>
+
If <math>H\left(  \alpha\right)  </math> is even, then <math>\mathrm{d}H\left(  0\right)  /\mathrm{d}\alpha=0</math>
 
and <math>-a_{n}</math> is a zero if <math>a_{n}</math> is a zero. Then we have the simpler
 
and <math>-a_{n}</math> is a zero if <math>a_{n}</math> is a zero. Then we have the simpler
 
expression
 
expression
Line 108: Line 112:
 
</math></center>
 
</math></center>
  
=Derivation of the Wiener-Hopf equation=
+
==Derivation of the Wiener-Hopf equation==
  
 
We derive algebraic expressions for <math>\Phi^{\pm}\left(  \alpha,z\right)  </math>
 
We derive algebraic expressions for <math>\Phi^{\pm}\left(  \alpha,z\right)  </math>
using integral transforms (Eqn.~((4-9))) on Eqn.~((4-22)) and
+
using integral transforms of the equations which gives
Eqn.~((4-27)). The Fourier transforms of Eqn.~((4-27)) according to
 
the definition given by Eqn.~((4-9)) gives
 
 
<center><math>
 
<center><math>
 
\left\{  \frac{\partial^{2}}{\partial z^{2}}-\left(  \alpha^{2}+k^{2}\right)
 
\left\{  \frac{\partial^{2}}{\partial z^{2}}-\left(  \alpha^{2}+k^{2}\right)
Line 128: Line 130:
 
\Phi^{\pm}\left(  \alpha,z\right)  =\Phi^{\pm}\left(  \alpha,0\right)
 
\Phi^{\pm}\left(  \alpha,z\right)  =\Phi^{\pm}\left(  \alpha,0\right)
 
\frac{\cosh\gamma\left(  z+H\right)  }{\cosh\gamma H}\pm g\left(
 
\frac{\cosh\gamma\left(  z+H\right)  }{\cosh\gamma H}\pm g\left(
\alpha,z\right)  (4-44)
+
\alpha,z\right)
 
</math></center>
 
</math></center>
 
where <math>\gamma=\sqrt{\alpha^{2}+k^{2}}</math> and <math>g\left(  \alpha,z\right)  </math> is a
 
where <math>\gamma=\sqrt{\alpha^{2}+k^{2}}</math> and <math>g\left(  \alpha,z\right)  </math> is a
Line 145: Line 147:
 
h\left(  \alpha,z\right)    =\int^{z}\frac{\sinh\gamma\left(  z-t\right)
 
h\left(  \alpha,z\right)    =\int^{z}\frac{\sinh\gamma\left(  z-t\right)
 
}{\gamma}\left\{  \phi_{x}\left(  0,t\right)  -\mathrm{i}\alpha
 
}{\gamma}\left\{  \phi_{x}\left(  0,t\right)  -\mathrm{i}\alpha
\phi\left(  0,t\right)  \right\}  dt.
+
\phi\left(  0,t\right)  \right\}  \mathrm{d}t.
 
</math></center>
 
</math></center>
 
Note that <math>\operatorname{Re}\gamma>0</math> when <math>\operatorname{Re}\alpha>0</math> and
 
Note that <math>\operatorname{Re}\gamma>0</math> when <math>\operatorname{Re}\alpha>0</math> and
 
<math>\operatorname{Re}\gamma<0</math> when <math>\operatorname{Re}\alpha<0</math>. We have, by
 
<math>\operatorname{Re}\gamma<0</math> when <math>\operatorname{Re}\alpha<0</math>. We have, by
differentiating both sides of Eqn.~((4-44)) with respect to <math>z</math> at <math>z=0</math>
+
differentiating both sides with respect to <math>z</math> at <math>z=0</math>
 
<center><math>
 
<center><math>
 
\Phi_{z}^{\pm}\left(  \alpha,0\right)  =\Phi^{\pm}\left(  \alpha,0\right)
 
\Phi_{z}^{\pm}\left(  \alpha,0\right)  =\Phi^{\pm}\left(  \alpha,0\right)
\gamma\tanh\gamma H\pm g_{z}\left(  \alpha,0\right)  (eq:4)
+
\gamma\tanh\gamma H\pm g_{z}\left(  \alpha,0\right)
 
</math></center>
 
</math></center>
 
where <math>\Phi_{z}^{\pm}\left(  \alpha,0\right)  </math> denotes the <math>z</math>-derivative. We
 
where <math>\Phi_{z}^{\pm}\left(  \alpha,0\right)  </math> denotes the <math>z</math>-derivative. We
apply the integral transform to Eqn.~((4-22)) in <math>x<0</math> and <math>x>0</math>,
+
apply the integral transform to the free-surface conditions in <math>x<0</math> and <math>x>0</math>,
 
<center><math>
 
<center><math>
 
\left\{  D_{1}\gamma^{4}-m_{1}\omega^{2}+\rho g\right\}  \Phi_{z}^{-}\left(
 
\left\{  D_{1}\gamma^{4}-m_{1}\omega^{2}+\rho g\right\}  \Phi_{z}^{-}\left(
 
\alpha,0\right)  -\rho\omega^{2}\Phi^{-}\left(  \alpha,0\right)  +P_{1}\left(
 
\alpha,0\right)  -\rho\omega^{2}\Phi^{-}\left(  \alpha,0\right)  +P_{1}\left(
\alpha\right)    =0, (4-23)
+
\alpha\right)    =0,  
 
</math></center>
 
</math></center>
 
<center><math>
 
<center><math>
 
\left\{  D_{2}\gamma^{4}-m_{2}\omega^{2}+\rho g\right\}  \Phi_{z}^{+}\left(
 
\left\{  D_{2}\gamma^{4}-m_{2}\omega^{2}+\rho g\right\}  \Phi_{z}^{+}\left(
 
\alpha,0\right)  -\rho\omega^{2}\Phi^{+}\left(  \alpha,0\right)  -P_{2}\left(
 
\alpha,0\right)  -\rho\omega^{2}\Phi^{+}\left(  \alpha,0\right)  -P_{2}\left(
\alpha\right)    =0, (4-24)
+
\alpha\right)    =0,  
 
</math></center>
 
</math></center>
 
where
 
where
Line 174: Line 176:
 
<center><math>
 
<center><math>
 
c_{\mathrm{i}}^{1}=\left.  \left(  \frac{\partial}{\partial x}\right)
 
c_{\mathrm{i}}^{1}=\left.  \left(  \frac{\partial}{\partial x}\right)
^{\mathrm{i}}\phi_{z}\right|  _{x=0-,z=0},\;c_{\mathrm{i}}
+
^{i}\phi_{z}\right|  _{x=0-,z=0},\;c_{\mathrm{i}}
^{2}=\left.  \left(  \frac{\partial}{\partial x}\right)  ^{\mathrm{i}
+
^{2}=\left.  \left(  \frac{\partial}{\partial x}\right)  ^{i
}\phi_{z}\right|  _{x=0+,z=0},\;\mathrm{i}=0,1,2,3.
+
}\phi_{z}\right|  _{x=0+,z=0},\;i=0,1,2,3.
 
</math></center>
 
</math></center>
From Eqn.~((eq:4)), Eqn.~((4-23)) and Eqn.~((4-24)) we have
+
We therefore have
 
<center><math>\begin{matrix}
 
<center><math>\begin{matrix}
 
f_{1}\left(  \gamma\right)  \Phi_{z}^{-}\left(  \alpha,0\right)  +C_{1}\left(
 
f_{1}\left(  \gamma\right)  \Phi_{z}^{-}\left(  \alpha,0\right)  +C_{1}\left(
\alpha\right)  & =0 (4-46)\\
+
\alpha\right)  & =0 \\
 
f_{2}\left(  \gamma\right)  \Phi_{z}^{+}\left(  \alpha,0\right)  +C_{2}\left(
 
f_{2}\left(  \gamma\right)  \Phi_{z}^{+}\left(  \alpha,0\right)  +C_{2}\left(
\alpha\right)  & =0 (4-47)
+
\alpha\right)  & =0  
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
where
 
where
Line 197: Line 199:
 
</math></center>
 
</math></center>
  
= [[Dispersion Relation for a Floating Elastic Plate]] =
+
== [[Dispersion Relation for a Floating Elastic Plate]] ==
  
 
Functions <math>f_{1}</math> and <math>f_{2}</math> are  
 
Functions <math>f_{1}</math> and <math>f_{2}</math> are  
[[Dispersion Relation for a Floating Elastic Plate]] and the zeros of these functions are the primary tools in
+
the [[Dispersion Relation for a Floating Elastic Plate]] and the zeros of these functions are the primary tools in
 
our method of deriving the solutions.  
 
our method of deriving the solutions.  
 
Functions <math>\Phi_{z}^{-}\left(  \alpha,0\right)  </math>, and <math>\Phi_{z}^{+}\left(
 
Functions <math>\Phi_{z}^{-}\left(  \alpha,0\right)  </math>, and <math>\Phi_{z}^{+}\left(
\alpha,0\right)  </math> are defined in <math>\Im\alpha<0</math> and
+
\alpha,0\right)  </math> are defined in <math>\operatorname{Im}\alpha<0</math> and
 
<math>\operatorname{Im}\alpha>0</math>, respectively. However they can be extended in the
 
<math>\operatorname{Im}\alpha>0</math>, respectively. However they can be extended in the
whole plane defined by Eqn.~((4-46)) and Eqn.~((4-47)) via analytic
+
whole plane defined via analytic
continuation.\ Eqn.~((4-46)) and Eqn.~((4-47)) show that the
+
continuation. This show that the
 
singularities of <math>\Phi_{z}^{-}</math> and <math>\Phi_{z}^{+}</math> are determined by the
 
singularities of <math>\Phi_{z}^{-}</math> and <math>\Phi_{z}^{+}</math> are determined by the
 
positions of the zeros of <math>f_{1}</math>\ and <math>f_{2}</math>, since <math>g_{z}\left(
 
positions of the zeros of <math>f_{1}</math>\ and <math>f_{2}</math>, since <math>g_{z}\left(
Line 215: Line 217:
 
<center><math>
 
<center><math>
 
\mathcal{K}_{j}=\left\{  \alpha\in\mathbb{C}\mid f_{j}\left(  \gamma\right)
 
\mathcal{K}_{j}=\left\{  \alpha\in\mathbb{C}\mid f_{j}\left(  \gamma\right)
=0,\;\alpha=\sqrt{\gamma^{2}-k^{2}},\, \Im(\alpha)>0\,\,\,\mathrm{or}\,\,\,  
+
=0,\;\alpha=\sqrt{\gamma^{2}-k^{2}},\, \operatorname{Im}(\alpha)>0\,\,\,\mathrm{or}\,\,\,  
 
\alpha>0\,\,\,\mathrm{for}\, \alpha\in\mathbb{R}\right\}  .
 
\alpha>0\,\,\,\mathrm{for}\, \alpha\in\mathbb{R}\right\}  .
 
</math></center>
 
</math></center>
 
We avoid numbering the roots with this notation, but for numerical purposes this is important
 
We avoid numbering the roots with this notation, but for numerical purposes this is important
and we order them with increasing size.  
+
and we order them with increasing size.
Fig.~((roots5)a, b) show the relative positions of the singularities.
 
 
 
\begin{figure}[tbh]\begin{center}
 
\includegraphics[height=4.547cm,width=12.6987cm]{roots5.eps}
 
\caption{Locations (not to scale) of the singularities which determine <math>\Phi_{z}^{-}</math> (figure (a)) and <math>\Phi_{z}^{+} </math> (figure(b)). Thick arrow at <math>-i\tau</math> in (a) and at <math>i\tau</math> in (b) shows the integral path for the inverse Fourier transform. Figures (a) and (b) illustrate how the negative real singularity <math>-\lambda</math> of <math>\Phi_{z}^{-}</math>\ is moved to become a singularity of <math>\Phi_{z}^{+}</math>.}  (roots5)
 
\end{center}
 
\end{figure}
 
  
= Solution of the W-H Equation=
+
== Solution of the Wiener-Hopf Equation==
  
From Eqn.~((4-46)) and Eqn.~((4-47)) and using the Mittag-Leffler theorem ( [[carrier]] section 2.9), functions <math>\Phi_{z}^{\pm}</math> can be expressed by a series of fractional functions that contribute to the solutions. Thus, we have series expansions of <math>\Phi_{z}^{-}</math> and <math>\Phi_{z}^{+}</math>
+
Using the Mittag-Leffler theorem ([[Carrier, Krook and Pearson 1966]] section 2.9), functions <math>\Phi_{z}^{\pm}</math> can be expressed by a series of fractional functions that contribute to the solutions. Thus, we have series expansions of <math>\Phi_{z}^{-}</math> and <math>\Phi_{z}^{+}</math>
 
<center><math>
 
<center><math>
 
\Phi_{z}^{-}\left(  \alpha,0\right)  =\frac{Q_{1}\left(  -\lambda\right)
 
\Phi_{z}^{-}\left(  \alpha,0\right)  =\frac{Q_{1}\left(  -\lambda\right)
Line 241: Line 236:
 
\phi_{z}\left(  x,0\right)  =\frac{1}{2\pi}\int_{-\infty-\mathrm{i}
 
\phi_{z}\left(  x,0\right)  =\frac{1}{2\pi}\int_{-\infty-\mathrm{i}
 
\tau}^{\infty-\mathrm{i}\tau}\Phi_{z}^{-}e^{-\mathrm{i}\alpha
 
\tau}^{\infty-\mathrm{i}\tau}\Phi_{z}^{-}e^{-\mathrm{i}\alpha
x}d\alpha=\mathrm{i}Q_{1}\left(  -\lambda\right)  e^{\mathrm{i}
+
x}\mathrm{d}\alpha=\mathrm{i}Q_{1}\left(  -\lambda\right)  e^{\mathrm{i}
 
\lambda x}+\sum\limits_{q\in\mathcal{K}_{1}}\mathrm{i}Q_{1}\left(
 
\lambda x}+\sum\limits_{q\in\mathcal{K}_{1}}\mathrm{i}Q_{1}\left(
 
q\right)  e^{-\mathrm{i}qx} (4-51)
 
q\right)  e^{-\mathrm{i}qx} (4-51)
Line 252: Line 247:
 
\phi_{z}\left(  x,0\right)  =\frac{1}{2\pi}\int_{-\infty+\mathrm{i}
 
\phi_{z}\left(  x,0\right)  =\frac{1}{2\pi}\int_{-\infty+\mathrm{i}
 
\tau}^{\infty+\mathrm{i}\tau}\Phi_{z}^{+}e^{-\mathrm{i}\alpha
 
\tau}^{\infty+\mathrm{i}\tau}\Phi_{z}^{+}e^{-\mathrm{i}\alpha
x}d\alpha=-\sum\limits_{q\in\mathcal{K}_{2}}\mathrm{i}Q_{2}\left(
+
x}\mathrm{d}\alpha=-\sum\limits_{q\in\mathcal{K}_{2}}\mathrm{i}Q_{2}\left(
 
q\right)  e^{\mathrm{i}qx}.
 
q\right)  e^{\mathrm{i}qx}.
 
</math></center>
 
</math></center>
Line 366: Line 361:
 
</math></center>
 
</math></center>
 
where <math>R_{1}\left(  q^{\prime}\right)  </math> is a residue of <math>\left[  f_{1}\left(
 
where <math>R_{1}\left(  q^{\prime}\right)  </math> is a residue of <math>\left[  f_{1}\left(
\gamma\right)  \right]  ^{-1}<math> at </math>\gamma=q^{\prime}</math>
+
\gamma\right)  \right]  ^{-1}</math> at <math>\gamma=q^{\prime}</math>
 
<center><math>\begin{matrix}
 
<center><math>\begin{matrix}
R_{1}\left(  q^{\prime}\right)  & =\left(  \left.  \frac{df_{1}\left(
+
R_{1}\left(  q^{\prime}\right)  & =\left(  \left.  \frac{\mathrm{d}f_{1}\left(
\gamma\right)  }{d\gamma}\right|  _{\gamma=q^{\prime}}\right)  ^{-1}
+
\gamma\right)  }{\mathrm{d}\gamma}\right|  _{\gamma=q^{\prime}}\right)  ^{-1}
 
\\
 
\\
 
& =\left\{  5D_{1}q^{\prime3}+\frac{b_{1}}{q^{\prime}}+\frac{H}{q^{\prime}
 
& =\left\{  5D_{1}q^{\prime3}+\frac{b_{1}}{q^{\prime}}+\frac{H}{q^{\prime}
Line 376: Line 371:
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
We used <math>b_{1}=-m_{1}\omega^{2}+\rho g</math> and <math>f_{1}\left(  q^{\prime}\right)
 
We used <math>b_{1}=-m_{1}\omega^{2}+\rho g</math> and <math>f_{1}\left(  q^{\prime}\right)
=0<math> to simplify the formula. Displacement </math>w\left(  x\right)  </math> can be
+
=0</math> to simplify the formula. Displacement <math>w\left(  x\right)  </math> can be
 
obtained by multiplying Eqn.~((eq:solution1)) by <math>-\mathrm{i}
 
obtained by multiplying Eqn.~((eq:solution1)) by <math>-\mathrm{i}
 
/\omega</math>. Notice that the formula for the residue is again expressed by a
 
/\omega</math>. Notice that the formula for the residue is again expressed by a
Line 395: Line 390:
  
 
For <math>x>0</math>, the functions <math>\phi_{z}\left(  x,0\right)  </math> and <math>\phi\left(
 
For <math>x>0</math>, the functions <math>\phi_{z}\left(  x,0\right)  </math> and <math>\phi\left(
x,z\right)  <math>\ are obtained by closing the integral contour in </math>\mathcal{D}
+
x,z\right)  </math> are obtained by closing the integral contour in <math>\mathcal{D}
 
_{-}</math>,
 
_{-}</math>,
 
<center><math>\begin{matrix}
 
<center><math>\begin{matrix}
Line 407: Line 402:
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
where <math>R_{2}</math> is a residue of <math>\left[  f_{2}\left(  \gamma\right)  \right]
 
where <math>R_{2}</math> is a residue of <math>\left[  f_{2}\left(  \gamma\right)  \right]
^{-1}<math>\ and its formula can be obtained by replacing the subscript </math>1</math> with
+
^{-1}</math> and its formula can be obtained by replacing the subscript <math>1</math> with
 
<math>2</math> in Eqn.~((R)). Notice that since <math>R_{j}\sim O\left(  q^{-9}\right)  </math>,
 
<math>2</math> in Eqn.~((R)). Notice that since <math>R_{j}\sim O\left(  q^{-9}\right)  </math>,
 
<math>j=1,2</math>, the coefficients of <math>\phi_{z}</math> of Eqn.~((4-28)) decay as
 
<math>j=1,2</math>, the coefficients of <math>\phi_{z}</math> of Eqn.~((4-28)) decay as

Latest revision as of 22:16, 6 September 2009


Introduction

We present here the Wiener-Hopf solution to the problem of a two semi-infinite Two-Dimensional Floating Elastic Plates. The solution method is based on the one presented by Chung and Fox 2002. This problem has been well studied and the first solution was by Evans and Davies 1968 but they did not actually develop the method sufficiently to be able to calculate the solution. A solution was also developed by Balmforth and Craster 1999 and by Tkacheva 2004.

A simpler problem is the Wiener-Hopf Solution for a Semi-Infinite Dock

The theory is described in Wiener-Hopf.

Elastic plate

We imagine two semi-infinite Floating Elastic Plates of (possibly) different properties. The equations are the following

[math]\displaystyle{ \left( D_{j}\left( \frac{\partial^{2}}{\partial x^{2}}-k^{2}\right) ^{2}+\rho g-m_{j}\omega^{2}\right) \phi_{z}-\rho\omega^{2}\phi =0,\;j=1,2,\;z=0 }[/math]
[math]\displaystyle{ \left( \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right) \phi =0,\;-H\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z} =0,\;\;z=-H. }[/math]

where [math]\displaystyle{ j=1 }[/math] is to the left and [math]\displaystyle{ j=2 }[/math] is to the right of [math]\displaystyle{ x=0. }[/math] We apply the Fourier transform to these equations in [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math] and obtain algebraic expressions of the Fourier transform of [math]\displaystyle{ \phi\left( x,0\right) }[/math]. The Fourier transforms of [math]\displaystyle{ \phi\left( x,0\right) }[/math] in [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math] are defined as

[math]\displaystyle{ \Phi^{-}\left( \alpha,z\right) =\int_{-\infty}^{0}\phi\left( x,z\right) e^{\mathrm{i}\alpha x}\mathrm{d}x }[/math]

and

[math]\displaystyle{ \Phi^{+}\left( \alpha,z\right) =\int_{0}^{\infty}\phi\left( x,z\right) e^{\mathrm{i}\alpha x}\mathrm{d}x. }[/math]

Notice that the superscript `[math]\displaystyle{ + }[/math]' and `[math]\displaystyle{ - }[/math]' correspond to the integral domain. The Sommerfeld Radiation Conditions introduced in section 2.3 restrict the amplitude of [math]\displaystyle{ \phi\left( x,z\right) }[/math] to stay finite as [math]\displaystyle{ \left| x\right| \rightarrow \infty }[/math] because of the absence of dissipation. It follows that [math]\displaystyle{ \Phi ^{-}\left( \alpha,z\right) }[/math] and [math]\displaystyle{ \Phi^{+}\left( \alpha,z\right) }[/math] are regular in [math]\displaystyle{ \operatorname{Im}\alpha\lt 0 }[/math] and [math]\displaystyle{ \operatorname{Im}\alpha\gt 0 }[/math], respectively.

It is possible to find the inverse transform of the sum of functions [math]\displaystyle{ \Phi=\Phi^{-}+\Phi^{+} }[/math] using the inverse formula if the two functions share a strip of their analyticity in which a integral path [math]\displaystyle{ -\infty\lt \varepsilon\lt \infty }[/math] can be taken. The Wiener-Hopf technique usually involves the spliting of complex valued functions into a product of two regular functions in the lower and upper half planes and then the application of Liouville's theorem, which states that a function that is bounded and analytic in the whole plane is constant everywhere. A corollary of Liouville's theorem is that a function which is asymptotically [math]\displaystyle{ o\left( \alpha^{n+1}\right) }[/math] as [math]\displaystyle{ \left| \alpha\right| \rightarrow\infty }[/math] must be a polynomial of [math]\displaystyle{ n }[/math]'th order.

We will show two ways of solving the given boundary value problem. First we figure out the domains of regularity of the functions of complex variable defined by integrals, thus we are able to calculate the inverse that has the appropriate asymptotic behaviour. Secondly we find the asymptotic behaviour of the solution from the physical conditions, thus we already know the domains in which the Fourier transforms are regular and are able to calculate the inverse transform.

Weierstrass's factor theorem

As mentioned above, we will require splitting a ratio of two functions of a complex variable in [math]\displaystyle{ \alpha }[/math]-plane. We here remind ourselves of Weierstrass's factor theorem (Carrier, Krook and Pearson 1966 section 2.9) which can be proved using the Mittag-Leffler theorem.

Let [math]\displaystyle{ H\left( \alpha\right) }[/math] denote a function that is analytic in the whole [math]\displaystyle{ \alpha }[/math]-plane (except possibly at infinity) and has zeros of first order at [math]\displaystyle{ a_{0} }[/math], [math]\displaystyle{ a_{1} }[/math], [math]\displaystyle{ a_{2} }[/math], ..., and no zero is located at the origin. Consider the Mittag-Leffler expansion of the logarithmic derivative of [math]\displaystyle{ H\left( \alpha\right) }[/math], i.e.,

[math]\displaystyle{ \frac{\mathrm{d}\log H\left( \alpha\right) }{\mathrm{d}\alpha} =\frac{1}{H\left( \alpha\right) }\frac{\mathrm{d}H\left( \alpha\right) }{\mathrm{d}\alpha} =\frac{\mathrm{d}\log H\left( 0\right) }{\mathrm{d}\alpha}+\sum_{n=0}^{\infty}\left[ \frac{1}{\alpha-a_{n}}+\frac{1}{a_{n}}\right] . }[/math]

Integrating both sides in [math]\displaystyle{ \left[ 0,\alpha\right] }[/math] we have

[math]\displaystyle{ \log H\left( \alpha\right) =\log H\left( 0\right) +\alpha\frac{\mathrm{d}\log H\left( 0\right) }{\mathrm{d}\alpha}+\sum_{n=0}^{\infty}\left[ \log\left( 1-\frac{\alpha}{a_{n}}\right) +\frac{\alpha}{a_{n}}\right] . }[/math]

Therefore, the expression for [math]\displaystyle{ H\left( \alpha\right) }[/math] is

[math]\displaystyle{ H\left( \alpha\right) =H\left( 0\right) \exp\left[ \alpha\frac{\mathrm{d}\log H\left( 0\right) }{\mathrm{d}\alpha}\right] \prod_{n=0}^{\infty}\left( 1-\frac{\alpha}{a_{n}}\right) e^{\alpha/a_{n}}. }[/math]

If [math]\displaystyle{ H\left( \alpha\right) }[/math] is even, then [math]\displaystyle{ \mathrm{d}H\left( 0\right) /\mathrm{d}\alpha=0 }[/math] and [math]\displaystyle{ -a_{n} }[/math] is a zero if [math]\displaystyle{ a_{n} }[/math] is a zero. Then we have the simpler expression

[math]\displaystyle{ H\left( \alpha\right) =H\left( 0\right) \prod_{n=0}^{\infty}\left( 1-\frac{\alpha^{2}}{a_{n}^{2}}\right) . }[/math]

Derivation of the Wiener-Hopf equation

We derive algebraic expressions for [math]\displaystyle{ \Phi^{\pm}\left( \alpha,z\right) }[/math] using integral transforms of the equations which gives

[math]\displaystyle{ \left\{ \frac{\partial^{2}}{\partial z^{2}}-\left( \alpha^{2}+k^{2}\right) \right\} \Phi^{\pm}\left( \alpha,z\right) =\pm\left\{ \mathrm{i} \alpha\phi\left( 0,z\right) -\phi_{x}\left( 0,z\right) \right\} . }[/math]

Hence, the solutions of the above ordinary differential equations with the Fourier transform of condition ((4-45)),

[math]\displaystyle{ \Phi_{z}^{\pm}\left( \alpha,-H\right) =0, }[/math]

can be written as

[math]\displaystyle{ \Phi^{\pm}\left( \alpha,z\right) =\Phi^{\pm}\left( \alpha,0\right) \frac{\cosh\gamma\left( z+H\right) }{\cosh\gamma H}\pm g\left( \alpha,z\right) }[/math]

where [math]\displaystyle{ \gamma=\sqrt{\alpha^{2}+k^{2}} }[/math] and [math]\displaystyle{ g\left( \alpha,z\right) }[/math] is a function determined by [math]\displaystyle{ \left\{ \mathrm{i}\alpha\phi\left( 0,z\right) -\phi_{x}\left( 0,z\right) \right\} }[/math],

[math]\displaystyle{ g\left( \alpha,z\right) =\frac{h_{z}\left( \alpha,-H\right) }{\gamma }\left( \tanh\gamma H\cosh\gamma\left( z+H\right) -\sinh\gamma\left( z+H\right) \right) }[/math]
[math]\displaystyle{ +h\left( \alpha,z\right) \left( 1-\frac{\cosh\gamma\left( z+H\right) }{\cosh\gamma H}\right) , }[/math]
[math]\displaystyle{ h\left( \alpha,z\right) =\int^{z}\frac{\sinh\gamma\left( z-t\right) }{\gamma}\left\{ \phi_{x}\left( 0,t\right) -\mathrm{i}\alpha \phi\left( 0,t\right) \right\} \mathrm{d}t. }[/math]

Note that [math]\displaystyle{ \operatorname{Re}\gamma\gt 0 }[/math] when [math]\displaystyle{ \operatorname{Re}\alpha\gt 0 }[/math] and [math]\displaystyle{ \operatorname{Re}\gamma\lt 0 }[/math] when [math]\displaystyle{ \operatorname{Re}\alpha\lt 0 }[/math]. We have, by differentiating both sides with respect to [math]\displaystyle{ z }[/math] at [math]\displaystyle{ z=0 }[/math]

[math]\displaystyle{ \Phi_{z}^{\pm}\left( \alpha,0\right) =\Phi^{\pm}\left( \alpha,0\right) \gamma\tanh\gamma H\pm g_{z}\left( \alpha,0\right) }[/math]

where [math]\displaystyle{ \Phi_{z}^{\pm}\left( \alpha,0\right) }[/math] denotes the [math]\displaystyle{ z }[/math]-derivative. We apply the integral transform to the free-surface conditions in [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math],

[math]\displaystyle{ \left\{ D_{1}\gamma^{4}-m_{1}\omega^{2}+\rho g\right\} \Phi_{z}^{-}\left( \alpha,0\right) -\rho\omega^{2}\Phi^{-}\left( \alpha,0\right) +P_{1}\left( \alpha\right) =0, }[/math]
[math]\displaystyle{ \left\{ D_{2}\gamma^{4}-m_{2}\omega^{2}+\rho g\right\} \Phi_{z}^{+}\left( \alpha,0\right) -\rho\omega^{2}\Phi^{+}\left( \alpha,0\right) -P_{2}\left( \alpha\right) =0, }[/math]

where

[math]\displaystyle{ P_{j}\left( \alpha\right) =D_{j}\left[ c_{3}^{j}-\mathrm{i}c_{2} ^{j}\alpha-\left( \alpha+2k^{2}\right) \left( c_{1}^{j}-\mathrm{i} c_{0}^{j}\alpha\right) \right] ,\;j=1,2, }[/math]
[math]\displaystyle{ c_{\mathrm{i}}^{1}=\left. \left( \frac{\partial}{\partial x}\right) ^{i}\phi_{z}\right| _{x=0-,z=0},\;c_{\mathrm{i}} ^{2}=\left. \left( \frac{\partial}{\partial x}\right) ^{i }\phi_{z}\right| _{x=0+,z=0},\;i=0,1,2,3. }[/math]

We therefore have

[math]\displaystyle{ \begin{matrix} f_{1}\left( \gamma\right) \Phi_{z}^{-}\left( \alpha,0\right) +C_{1}\left( \alpha\right) & =0 \\ f_{2}\left( \gamma\right) \Phi_{z}^{+}\left( \alpha,0\right) +C_{2}\left( \alpha\right) & =0 \end{matrix} }[/math]

where

[math]\displaystyle{ f_{j}\left( \gamma\right) =D_{j}\gamma^{4}-m_{j}\omega^{2}+\rho g-\frac{\rho\omega^{2}}{\gamma\tanh\gamma H},\;j=1,2, }[/math]
[math]\displaystyle{ C_{1}\left( \alpha\right) =-\frac{\rho\omega^{2}g_{z}\left( \alpha,0\right) }{\gamma\tanh\gamma H}+P_{1}\left( \alpha\right) ,\;C_{2}\left( \alpha\right) =\frac{\rho\omega^{2}g_{z}\left( \alpha,0\right) }{\gamma\tanh\gamma H}-P_{2}\left( \alpha\right) . }[/math]

Dispersion Relation for a Floating Elastic Plate

Functions [math]\displaystyle{ f_{1} }[/math] and [math]\displaystyle{ f_{2} }[/math] are the Dispersion Relation for a Floating Elastic Plate and the zeros of these functions are the primary tools in our method of deriving the solutions. Functions [math]\displaystyle{ \Phi_{z}^{-}\left( \alpha,0\right) }[/math], and [math]\displaystyle{ \Phi_{z}^{+}\left( \alpha,0\right) }[/math] are defined in [math]\displaystyle{ \operatorname{Im}\alpha\lt 0 }[/math] and [math]\displaystyle{ \operatorname{Im}\alpha\gt 0 }[/math], respectively. However they can be extended in the whole plane defined via analytic continuation. This show that the singularities of [math]\displaystyle{ \Phi_{z}^{-} }[/math] and [math]\displaystyle{ \Phi_{z}^{+} }[/math] are determined by the positions of the zeros of [math]\displaystyle{ f_{1} }[/math]\ and [math]\displaystyle{ f_{2} }[/math], since [math]\displaystyle{ g_{z}\left( \alpha,0\right) }[/math] is bounded and zeros of [math]\displaystyle{ \gamma\tanh\gamma H }[/math] are not the singularities of [math]\displaystyle{ \Phi_{z}^{\pm} }[/math]. We denote sets of singularities corresponding to zeros of [math]\displaystyle{ f_{1} }[/math] and [math]\displaystyle{ f_{2} }[/math] by [math]\displaystyle{ \mathcal{K}_{1} }[/math] and [math]\displaystyle{ \mathcal{K}_{2} }[/math] respectively

[math]\displaystyle{ \mathcal{K}_{j}=\left\{ \alpha\in\mathbb{C}\mid f_{j}\left( \gamma\right) =0,\;\alpha=\sqrt{\gamma^{2}-k^{2}},\, \operatorname{Im}(\alpha)\gt 0\,\,\,\mathrm{or}\,\,\, \alpha\gt 0\,\,\,\mathrm{for}\, \alpha\in\mathbb{R}\right\} . }[/math]

We avoid numbering the roots with this notation, but for numerical purposes this is important and we order them with increasing size.

Solution of the Wiener-Hopf Equation

Using the Mittag-Leffler theorem (Carrier, Krook and Pearson 1966 section 2.9), functions [math]\displaystyle{ \Phi_{z}^{\pm} }[/math] can be expressed by a series of fractional functions that contribute to the solutions. Thus, we have series expansions of [math]\displaystyle{ \Phi_{z}^{-} }[/math] and [math]\displaystyle{ \Phi_{z}^{+} }[/math]

[math]\displaystyle{ \Phi_{z}^{-}\left( \alpha,0\right) =\frac{Q_{1}\left( -\lambda\right) }{\alpha+\lambda}+\sum_{q\in\mathcal{K}_{1}}\frac{Q_{1}\left( q\right) }{\alpha-q},\;\Phi_{z}^{+}\left( \alpha,0\right) =\sum_{q\in\mathcal{K}_{2} }\frac{Q_{2}\left( q\right) }{\alpha+q}, }[/math]

where [math]\displaystyle{ \lambda\ }[/math]is a positive real singularity of [math]\displaystyle{ \Phi_{z}^{-} }[/math] and [math]\displaystyle{ Q_{1} }[/math], [math]\displaystyle{ Q_{2} }[/math] are coefficient functions yet to be determined. Note that [math]\displaystyle{ \Phi _{z}^{-}\left( \alpha,0\right) }[/math]\ has an additional term corresponding to [math]\displaystyle{ -\lambda }[/math]\ because of the incident wave. The solution [math]\displaystyle{ \phi\left( x,0\right) }[/math], [math]\displaystyle{ x\lt 0 }[/math] is then obtained using the inverse Fourier transform taken over the line shown in Fig.~((roots5)a)

[math]\displaystyle{ \phi_{z}\left( x,0\right) =\frac{1}{2\pi}\int_{-\infty-\mathrm{i} \tau}^{\infty-\mathrm{i}\tau}\Phi_{z}^{-}e^{-\mathrm{i}\alpha x}\mathrm{d}\alpha=\mathrm{i}Q_{1}\left( -\lambda\right) e^{\mathrm{i} \lambda x}+\sum\limits_{q\in\mathcal{K}_{1}}\mathrm{i}Q_{1}\left( q\right) e^{-\mathrm{i}qx} (4-51) }[/math]

where [math]\displaystyle{ \tau }[/math]\ is an infinitesimally small positive real number. Note that [math]\displaystyle{ k=\lambda\sin\theta }[/math]. Similarly, we obtain [math]\displaystyle{ \phi\left( x,0\right) }[/math] for [math]\displaystyle{ x\gt 0 }[/math] by taking the integration path shown in Fig.~((roots5)b), then we have

[math]\displaystyle{ \phi_{z}\left( x,0\right) =\frac{1}{2\pi}\int_{-\infty+\mathrm{i} \tau}^{\infty+\mathrm{i}\tau}\Phi_{z}^{+}e^{-\mathrm{i}\alpha x}\mathrm{d}\alpha=-\sum\limits_{q\in\mathcal{K}_{2}}\mathrm{i}Q_{2}\left( q\right) e^{\mathrm{i}qx}. }[/math]

The Wiener-Hopf technique enables us to calculate coefficients [math]\displaystyle{ Q_{1} }[/math] and [math]\displaystyle{ Q_{2} }[/math] without knowing functions [math]\displaystyle{ C_{1} }[/math], [math]\displaystyle{ C_{2} }[/math], or [math]\displaystyle{ \left\{ \phi _{x}\left( 0,z\right) -\mathrm{i}\alpha\phi\left( 0,z\right) \right\} }[/math]. It requires the domains of analyticity of Eqn.~((4-46)) and Eqn.~((4-47)) to have a common strip of analyticity which they do not have right now. We create such a strip by shifting a singularity of [math]\displaystyle{ \Phi_{z}^{-} }[/math] in Eqn.~((4-46)) to [math]\displaystyle{ \Phi_{z}^{+} }[/math] in Eqn.~((4-47)) (we can also create a strip by moving a singularity of [math]\displaystyle{ \Phi_{z}^{+} }[/math], and more than one of the singularities can be moved). Here, we shift [math]\displaystyle{ -\lambda }[/math] as shown in Fig.~((roots5)a), so that the common strip of analyticity denoted by [math]\displaystyle{ \mathcal{D} }[/math] is created on the real axis, which passes above the two negative real singularities and below the two positive real singularities. We denote the domain above and including [math]\displaystyle{ \mathcal{D} }[/math] by [math]\displaystyle{ \mathcal{D}_{+} }[/math]\ and below and including [math]\displaystyle{ \mathcal{D} }[/math] by [math]\displaystyle{ \mathcal{D}_{-} }[/math]. Hence, the zeros of [math]\displaystyle{ f_{1} }[/math] and [math]\displaystyle{ f_{2} }[/math] belong to either [math]\displaystyle{ \mathcal{D}_{+} }[/math] or [math]\displaystyle{ \mathcal{D}_{-} }[/math].

Let [math]\displaystyle{ \Psi_{z}^{-} }[/math] be a function created by subtracting a singularity from function [math]\displaystyle{ \Phi_{z}^{-} }[/math]. Then\ [math]\displaystyle{ \Psi_{z}^{-}\left( \alpha,0\right) }[/math] is regular in [math]\displaystyle{ \mathcal{D}_{-} }[/math].\ Since the removed singularity term makes no contribution to the solution,\ from Eqn.~((4-46)), [math]\displaystyle{ \Psi_{z}^{-} }[/math] satisfies

[math]\displaystyle{ f_{1}\left( \gamma\right) \Psi_{z}^{-}\left( \alpha,0\right) +C_{1}\left( \alpha\right) =0. (100) }[/math]

Eqn.~((4-47)) becomes, as a result of modifying function [math]\displaystyle{ \Phi_{z}^{+} }[/math] to a function denoted by [math]\displaystyle{ \Psi_{z}^{+} }[/math] with an additional singularity term,

[math]\displaystyle{ f_{2}\left( \gamma\right) \Psi_{z}^{+}\left( \alpha,0\right) -\frac {f_{2}\left( \lambda^{\prime}\right) Q_{1}\left( -\lambda\right) } {\alpha+\lambda}+C_{2}\left( \alpha\right) =0. (4-48) }[/math]

Our aim now is to find a formula for

[math]\displaystyle{ \Psi_{z}\left( \alpha,0\right) =\Psi_{z}^{-}\left( \alpha,0\right) +\Psi_{z}^{+}\left( \alpha,0\right) }[/math]

in [math]\displaystyle{ \alpha\in\mathcal{D} }[/math] so that its inverse Fourier transform can be calculated.

Adding both sides of Eqn.~((100)) and Eqn.~((4-48)) gives the Wiener-Hopf equation

[math]\displaystyle{ f_{1}\left( \gamma\right) \Psi_{z}^{-}\left( \alpha,0\right) +f_{2}\left( \gamma\right) \Psi_{z}^{+}\left( \alpha,0\right) -\frac{f_{2}\left( \lambda^{\prime}\right) Q_{1}\left( -\lambda\right) }{\alpha+\lambda }+C\left( \alpha\right) =0 (4-41) }[/math]

where [math]\displaystyle{ C\left( \alpha\right) =C_{1}\left( \alpha\right) -C_{2}\left( \alpha\right) }[/math]. This equation can alternatively be written as

[math]\displaystyle{ \begin{matrix} [c]{c} f_{2}\left( \gamma\right) \left[ f\left( \gamma\right) \Psi_{z} ^{+}\left( \alpha,0\right) -\frac{f_{2}\left( \lambda^{\prime}\right) Q_{1}\left( -\lambda\right) }{\alpha+\lambda}+C\left( \alpha\right) \right] \\ =-f_{1}\left( \gamma\right) \left[ f\left( \gamma\right) \Psi_{z} ^{-}\left( \alpha,0\right) +\frac{f_{2}\left( \lambda^{\prime}\right) Q_{1}\left( -\lambda\right) }{\alpha+\lambda}-C\left( \alpha\right) \right] \end{matrix} (eq:WH2) }[/math]

where [math]\displaystyle{ f\left( \gamma\right) =f_{2}\left( \gamma\right) -f_{1}\left( \gamma\right) . }[/math]

We now modify Eqn.~((eq:WH2)) so that the right and left hand sides of the equation become regular in [math]\displaystyle{ \mathcal{D}_{-} }[/math] and [math]\displaystyle{ \mathcal{D}_{+} }[/math] respectively. Using Weierstrass's factor theorem given in the previous subsection, the ratio [math]\displaystyle{ f_{2}/f_{1} }[/math] can be factorized into infinite products of polynomials [math]\displaystyle{ \left( 1-\alpha/q\right) }[/math], [math]\displaystyle{ q\in\mathcal{K}_{1} }[/math] and [math]\displaystyle{ \mathcal{K}_{2} }[/math]. Hence, using a regular non-zero function [math]\displaystyle{ K\left( \alpha\right) }[/math] in [math]\displaystyle{ \mathcal{D}_{+} }[/math],

[math]\displaystyle{ K\left( \alpha\right) =\left( \prod\limits_{q\in\mathcal{K}_{1}} \frac{q^{\prime}}{q+\alpha}\right) \left( \prod\limits_{q\in\mathcal{K}_{2} }\frac{q+\alpha}{q^{\prime}}\right) (eq:K) }[/math]

where [math]\displaystyle{ q^{\prime}=\sqrt{q^{2}+k^{2}} }[/math], then we have

[math]\displaystyle{ \frac{f_{2}}{f_{1}}=K\left( \alpha\right) K\left( -\alpha\right) . }[/math]

Note that the factorization is done in the [math]\displaystyle{ \alpha }[/math]-plane, hence functions [math]\displaystyle{ f_{1} }[/math] and [math]\displaystyle{ f_{2} }[/math] are here seen as functions of [math]\displaystyle{ \alpha }[/math] and we are actually factorizing

[math]\displaystyle{ \frac{f_{2}\left( \gamma\right) \gamma\sinh\gamma H}{f_{1}\left( \gamma\right) \gamma\sinh\gamma H} }[/math]

in order to satisfy the conditions given in the previous subsection. Then Eqn.~((eq:WH2)) can be rewritten as

[math]\displaystyle{ \begin{matrix} [c]{c} K\left( \alpha\right) \left[ f\left( \gamma\right) \Psi_{z}^{+}+C\right] -\left( K\left( \alpha\right) -\frac{1}{K\left( \lambda\right) }\right) \frac{f_{2}\left( \lambda^{\prime}\right) Q_{1}\left( -\lambda\right) }{\alpha+\lambda}\\ =-\frac{1}{K\left( -\alpha\right) }\left[ f\left( \gamma\right) \Psi _{z}^{-}-C\right] -\left( \frac{1}{K\left( -\alpha\right) }-\frac {1}{K\left( \lambda\right) }\right) \frac{f_{2}\left( \lambda^{\prime }\right) Q_{1}\left( -\lambda\right) }{\alpha+\lambda}. \end{matrix} (4-26) }[/math]

Note that the infinite products in Eqn.~((eq:K)) converge in the order of [math]\displaystyle{ q^{-5} }[/math] as [math]\displaystyle{ \left| q\right| }[/math] becomes large, thus numerical computation of [math]\displaystyle{ K\left( \alpha\right) }[/math] does not pose any difficulties.

The left hand side of Eqn.~((4-26)) is regular in [math]\displaystyle{ \mathcal{D}_{+} }[/math] and the right hand side is regular in [math]\displaystyle{ \mathcal{D}_{-} }[/math]. Notice that a function is added to both sides of the equation to make the right hand side of the equation regular in [math]\displaystyle{ \mathcal{D}_{-} }[/math]. The left hand side of Eqn.~((4-26)) is [math]\displaystyle{ o\left( \alpha^{4}\right) }[/math] as [math]\displaystyle{ \left| \alpha\right| \rightarrow \infty }[/math] in [math]\displaystyle{ \mathcal{D}_{+} }[/math], since [math]\displaystyle{ \Psi_{z}^{+}\rightarrow0 }[/math] and [math]\displaystyle{ K\left( \alpha\right) =O\left( 1\right) }[/math]\ as [math]\displaystyle{ \left| \alpha\right| \rightarrow\infty }[/math] in [math]\displaystyle{ \mathcal{D}_{+} }[/math]. The right hand side of Eqn.~((4-26)) has the equivalent analytic properties in [math]\displaystyle{ \mathcal{D}_{-} }[/math]. Liouville's theorem (Carrier, Krook and Pearson carrier section 2.4) tells us that there exists a function, which we denote [math]\displaystyle{ J\left( \alpha\right) }[/math], uniquely defined by Eqn.~((4-26)), and function [math]\displaystyle{ J\left( \alpha\right) }[/math] is a polynomial of degree three in the whole plane. Hence

[math]\displaystyle{ J\left( \alpha\right) =d_{0}+d_{1}\alpha+d_{2}\alpha^{2}+d_{3}\alpha^{3}. }[/math]

Equating Eqn.~((4-26)) for [math]\displaystyle{ \Psi_{z} }[/math] gives

[math]\displaystyle{ \Psi_{z}\left( \alpha,0\right) =\frac{-F\left( \alpha\right) }{K\left( \alpha\right) f_{1}\left( \gamma\right) }\;=or= \;-\frac{K\left( -\alpha\right) F\left( \alpha\right) }{f_{2}\left( \gamma\right) } (4-50) }[/math]

where

[math]\displaystyle{ F\left( \alpha\right) =J\left( \alpha\right) -\frac{Q_{1}\left( -\lambda\right) f_{2}\left( \lambda^{\prime}\right) }{\left( \alpha+\lambda\right) K\left( \lambda\right) }. }[/math]

Notice that procedure from Eqn.~((eq:WH2)) to Eqn.~((4-26)) eliminates the need for calculating constant [math]\displaystyle{ C }[/math] in Eqn.~((4-26)).

For [math]\displaystyle{ x\lt 0 }[/math] we close the integral contour in [math]\displaystyle{ \mathcal{D}_{+} }[/math], and put the incident wave back, then we have

[math]\displaystyle{ \phi_{z}\left( x,0\right) =\mathrm{i}Q_{1}\left( -\lambda\right) e^{\mathrm{i}\lambda x}-\sum\limits_{q\in\mathcal{K}_{1}} \frac{\mathrm{i}F\left( q\right) q^{\prime}R_{1}\left( q^{\prime }\right) }{qK\left( q\right) }e^{-\mathrm{i}qx}, (eq:solution1) }[/math]

where [math]\displaystyle{ R_{1}\left( q^{\prime}\right) }[/math] is a residue of [math]\displaystyle{ \left[ f_{1}\left( \gamma\right) \right] ^{-1} }[/math] at [math]\displaystyle{ \gamma=q^{\prime} }[/math]

[math]\displaystyle{ \begin{matrix} R_{1}\left( q^{\prime}\right) & =\left( \left. \frac{\mathrm{d}f_{1}\left( \gamma\right) }{\mathrm{d}\gamma}\right| _{\gamma=q^{\prime}}\right) ^{-1} \\ & =\left\{ 5D_{1}q^{\prime3}+\frac{b_{1}}{q^{\prime}}+\frac{H}{q^{\prime} }\left( \frac{\left( D_{1}q^{\prime5}+b_{1}q^{\prime}\right) ^{2}-\left( \rho\omega^{2}\right) ^{2}}{\rho\omega^{2}}\right) \right\} ^{-1}. (R) \end{matrix} }[/math]

We used [math]\displaystyle{ b_{1}=-m_{1}\omega^{2}+\rho g }[/math] and [math]\displaystyle{ f_{1}\left( q^{\prime}\right) =0 }[/math] to simplify the formula. Displacement [math]\displaystyle{ w\left( x\right) }[/math] can be obtained by multiplying Eqn.~((eq:solution1)) by [math]\displaystyle{ -\mathrm{i} /\omega }[/math]. Notice that the formula for the residue is again expressed by a polynomial using the dispersion equation as shown in section (sec:3), which gives us a stable numerical computation of the solutions.

The velocity potential [math]\displaystyle{ \phi\left( x,z\right) }[/math] can be obtained using Eqn.~((4-44)) and Eqn.~((eq:4)),

[math]\displaystyle{ \phi\left( x,z\right) =\frac{\mathrm{i}Q_{1}\left( -\lambda\right) \cosh\lambda^{\prime}\left( z+H\right) }{\lambda^{\prime}\sinh \lambda^{\prime}H}e^{\mathrm{i}\lambda x}-\sum\limits_{q\in \mathcal{K}_{1}}\frac{\mathrm{i}F\left( q\right) R_{1}\left( q^{\prime}\right) \cosh q^{\prime}\left( z+H\right) }{qK\left( q\right) \sinh q^{\prime}H}e^{-\mathrm{i}qx} }[/math]

where [math]\displaystyle{ \lambda^{\prime}=\sqrt{\lambda^{2}+k^{2}} }[/math].

For [math]\displaystyle{ x\gt 0 }[/math], the functions [math]\displaystyle{ \phi_{z}\left( x,0\right) }[/math] and [math]\displaystyle{ \phi\left( x,z\right) }[/math] are obtained by closing the integral contour in [math]\displaystyle{ \mathcal{D} _{-} }[/math],

[math]\displaystyle{ \begin{matrix} \phi_{z}\left( x,0\right) & =-\sum\limits_{q\in\mathcal{K}_{2}} \frac{\mathrm{i}K\left( q\right) F\left( -q\right) q^{\prime} R_{2}\left( q^{\prime}\right) }{q}e^{\mathrm{i}qx}, (4-28)\\ \phi\left( x,z\right) & =-\sum\limits_{q\in\mathcal{K}_{2}}\frac {\mathrm{i}K\left( q\right) F\left( -q\right) R_{2}\left( q^{\prime}\right) \cosh q^{\prime}\left( z+H\right) }{q\sinh q^{\prime} H}e^{\mathrm{i}qx}, \end{matrix} }[/math]

where [math]\displaystyle{ R_{2} }[/math] is a residue of [math]\displaystyle{ \left[ f_{2}\left( \gamma\right) \right] ^{-1} }[/math] and its formula can be obtained by replacing the subscript [math]\displaystyle{ 1 }[/math] with [math]\displaystyle{ 2 }[/math] in Eqn.~((R)). Notice that since [math]\displaystyle{ R_{j}\sim O\left( q^{-9}\right) }[/math], [math]\displaystyle{ j=1,2 }[/math], the coefficients of [math]\displaystyle{ \phi_{z} }[/math] of Eqn.~((4-28)) decay as [math]\displaystyle{ O\left( q^{-6}\right) }[/math] as [math]\displaystyle{ \left| q\right| }[/math] becomes large, so the displacement is bounded up to the fourth [math]\displaystyle{ x }[/math]-derivatives. In a physical sense, the biharmonic term of the plate equation for the vertical displacement is associated with the strain energy due to bending of the plate as explained in chapter 2. Hence, up to fourth derivative of the displacement function should be bounded, as has been confirmed. The coefficients of [math]\displaystyle{ \phi }[/math], have an extra [math]\displaystyle{ 1/q^{\prime}\tanh q^{\prime}H }[/math] term which is [math]\displaystyle{ O\left( q^{4}\right) }[/math], hence the coefficients decay as [math]\displaystyle{ O\left( q^{-2}\right) }[/math] as [math]\displaystyle{ \left| q\right| }[/math] becomes large. Therefore, [math]\displaystyle{ \phi }[/math] is bounded everywhere including at [math]\displaystyle{ x=0 }[/math].

Shifting a singularity of one function to the other is equivalent to subtracting an incident wave from both functions then solving the boundary value problem for the scattered field as in Balmforth and Craster 1999. As mentioned, any one of the singularities can be shifted as long as it creates a common strip of analyticity for the newly created functions. We chose [math]\displaystyle{ -\lambda }[/math] because of the convenience of the symmetry in locations of the singularities. The method of subtracting either incoming or transmitting wave requires the Fourier transform be performed twice, first to express the solution with a series expansion, and second to solve the system of equations for the newly created functions. Thus, we find the method of shifting a singularity shown here is advantageous to other methods since it needs the Fourier transform only once to obtain the Wiener-Hopf equation.

The polynomial [math]\displaystyle{ J\left( \alpha\right) }[/math] is yet to be determined. In the following section the coefficients of [math]\displaystyle{ J\left( \alpha\right) }[/math] will be determined from conditions at [math]\displaystyle{ x=0\pm }[/math], [math]\displaystyle{ -\infty\lt y\lt \infty }[/math], [math]\displaystyle{ z=0 }[/math].