Difference between revisions of "Method of Characteristics for Linear Equations"

From WikiWaves
Jump to navigationJump to search
 
(9 intermediate revisions by 3 users not shown)
Line 17: Line 17:
 
<center>
 
<center>
 
<math>
 
<math>
\partial_t u + \partial_x u = 0,\,\,-\infty<x<\infty,\,\,t>0,
+
\partial_t u + \partial_x u = 0,\,\,-\infty < x < \infty,\,\,t>0,
 
</math></center>
 
</math></center>
 
subject to the initial conditions
 
subject to the initial conditions
Line 28: Line 28:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d }{d t} u(X(t),t) = \partial_t u + \frac{d X}{dt}\partial_x u = \partial_x u \left(\frac{d X}{dt} - 1 \right)
+
\frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - 1 \right)
 
</math></center>
 
</math></center>
  
Therefore along the curve <math>\frac{d X}{dt} = 1</math> <math>u(x,t)</math> must be a constant.  
+
Therefore along the curve <math>\frac{\mathrm{d} X}{\mathrm{d}t} = 1</math> <math>u(x,t)</math> must be a constant.  
 
These are nothing but the straight lines <math>x = t+c</math>
 
These are nothing but the straight lines <math>x = t+c</math>
 
This means that we have
 
This means that we have
Line 45: Line 45:
 
<center>
 
<center>
 
<math>
 
<math>
\partial_t u + a(x,t)\partial_x u = 0,\,\,-\infty<x<\infty,\,\,t>0,
+
\partial_t u + a(x,t)\partial_x u = 0,\,\,-\infty < x < \infty,\,\,t>0,
 
</math></center>
 
</math></center>
 
then we can apply the method of characteristics.
 
then we can apply the method of characteristics.
Line 51: Line 51:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d U}{d t} = \partial_t u + \frac{d X}{dt}\partial_x u = \partial_x u \left(\frac{d X}{dt} - a(x,t) \right).
+
\frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - a(x,t) \right).
 
</math>
 
</math>
 
</center>
 
</center>
Line 57: Line 57:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d X}{d t} =  a(x,t) .
+
\frac{\mathrm{d} X}{\mathrm{d} t} =  a(x,t) .
 
</math>
 
</math>
 
</center>
 
</center>
Line 67: Line 67:
 
<center>
 
<center>
 
<math>
 
<math>
\partial_t u + x \partial_x u = 0,\,\,-\infty<x<\infty,\,\,t>0,
+
\partial_t u + x \partial_x u = 0,\,\,-\infty < x < \infty,\,\,t>0,
 
</math></center>
 
</math></center>
 
subject to the initial conditions
 
subject to the initial conditions
Line 78: Line 78:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d U}{d t} = \partial_t u + \frac{d X}{dt}\partial_x u = \partial_x u \left(\frac{d X}{dt} - x \right)
+
\frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d}X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - x \right)
 
</math></center>
 
</math></center>
  
Therefore along the curve <math>\frac{d X}{dt} = x</math> <math>u(x,t)</math> must be a constant.  
+
Therefore along the curve <math>\frac{\mathrm{d} X}{\mathrm{d}t} = x</math> <math>u(x,t)</math> must be a constant.  
 
These are the curves <math>x = ce^t</math>
 
These are the curves <math>x = ce^t</math>
 
This means that we have
 
This means that we have
Line 97: Line 97:
 
<center>
 
<center>
 
<math>
 
<math>
\partial_t u + t \partial_x u = 0,\,\,-\infty<x<\infty,\,\,t>0,
+
\partial_t u + t \partial_x u = 0,\,\,-\infty < x < \infty,\,\,t>0,
 
</math></center>
 
</math></center>
 
subject to the initial conditions
 
subject to the initial conditions
Line 108: Line 108:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d U}{d t} = \partial_t u + \frac{d X}{dt}\partial_x u = \partial_x u \left(\frac{d X}{dt} - t \right)
+
\frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - t \right)
 
</math></center>
 
</math></center>
  
Therefore along the curve <math>\frac{d X}{dt} = t</math> <math>u(x,t)</math> must be a constant.  
+
Therefore along the curve <math>\frac{\mathrm{d} X}{\mathrm{d}t} = t</math> <math>u(x,t)</math> must be a constant.  
 
These are the curves <math>x = t^2/2+c</math>
 
These are the curves <math>x = t^2/2+c</math>
 
This means that we have
 
This means that we have
Line 126: Line 126:
 
<center>
 
<center>
 
<math>
 
<math>
\partial_t u + t \partial_x u = xt,\,\,-\infty<x<\infty,\,\,t>0,
+
\partial_t u + t \partial_x u = xt,\,\,-\infty < x < \infty,\,\,t>0,
 
</math></center>
 
</math></center>
 
subject to the initial conditions
 
subject to the initial conditions
Line 137: Line 137:
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d U}{d t} = \partial_t u + \frac{d X}{dt}\partial_x u = \partial_x u \left(\frac{d X}{dt} - t \right) + xt
+
\frac{\mathrm{d} u}{\mathrm{d} t} = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d}X}{\mathrm{d}t} - t \right) + xt
 
</math></center>
 
</math></center>
  
Therefore along the curve <math>\frac{d X}{dt} = t</math> which are the curves <math>x = t^2/2+c</math>
+
Therefore along the curve <math>\frac{\mathrm{d} X}{\mathrm{d}t} = t</math> which are the curves <math>x = t^2/2+c</math>
 
<center>
 
<center>
 
<math>
 
<math>
\frac{d}{dt}u(x,t) = xt = t^3/2 + c t
+
\frac{\mathrm{d}}{\mathrm{d}t}u(x,t) = xt = t^3/2 + c t
 
</math>
 
</math>
 +
 +
 
</center>
 
</center>
 
Therefore  
 
Therefore  
Line 160: Line 162:
 
Therefore the solution is given <math>u(x,t) = t^4/8 + (x -t^2/2) t^2/2 + f(x-t^2/2)\,</math> or
 
Therefore the solution is given <math>u(x,t) = t^4/8 + (x -t^2/2) t^2/2 + f(x-t^2/2)\,</math> or
 
<math>u(x,t) = -t^4/8 + x t^2/2 + f(x-t^2/2)\,</math>
 
<math>u(x,t) = -t^4/8 + x t^2/2 + f(x-t^2/2)\,</math>
 +
 +
== Lecture Videos ==
 +
 +
=== Part 1 ===
 +
 +
{{#ev:youtube|zXEvCJyHQSg}}
 +
 +
=== Part 2 ===
 +
 +
{{#ev:youtube|vRRVU4VrxV0}}
 +
 +
=== Part 3 ===
 +
 +
{{#ev:youtube|xkGdvFGit_c}}
 +
 +
 +
=== Part 4 ===
 +
 +
{{#ev:youtube|rW-voMoG0KI}}

Latest revision as of 05:25, 7 August 2020

Nonlinear PDE's Course
Current Topic Method of Characteristics for Linear Equations
Next Topic Traffic Waves
Previous Topic



We present here a brief account of the method of characteristic for linear waves.

Introduction

The method of characteristics is an important method for hyperbolic PDE's which applies to both linear and nonlinear equations.

We begin with the simplest wave equation

[math]\displaystyle{ \partial_t u + \partial_x u = 0,\,\,-\infty \lt x \lt \infty,\,\,t\gt 0, }[/math]

subject to the initial conditions

[math]\displaystyle{ \left. u \right|_{t=0} = f(x) }[/math]

We consider the solution along the curve [math]\displaystyle{ (x,t) = (X(t),t) }[/math]. We then have

[math]\displaystyle{ \frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - 1 \right) }[/math]

Therefore along the curve [math]\displaystyle{ \frac{\mathrm{d} X}{\mathrm{d}t} = 1 }[/math] [math]\displaystyle{ u(x,t) }[/math] must be a constant. These are nothing but the straight lines [math]\displaystyle{ x = t+c }[/math] This means that we have

[math]\displaystyle{ u(x,t) = u(t+c,t) = u(c,0) = f(c) = f(x-t)\, }[/math]

Therefore the solution is [math]\displaystyle{ u(x,t) = f(x-t)\, }[/math].

General Form

If we consider the equation

[math]\displaystyle{ \partial_t u + a(x,t)\partial_x u = 0,\,\,-\infty \lt x \lt \infty,\,\,t\gt 0, }[/math]

then we can apply the method of characteristics. We consider the solution along the curve [math]\displaystyle{ (x,t) = (X(t),t) }[/math]. We then have

[math]\displaystyle{ \frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - a(x,t) \right). }[/math]

This gives us the following o.d.e. for the characteristic curves (along which the solution is a constant)

[math]\displaystyle{ \frac{\mathrm{d} X}{\mathrm{d} t} = a(x,t) . }[/math]

Example 1

Characteristic for Example 1

Consider the equation

[math]\displaystyle{ \partial_t u + x \partial_x u = 0,\,\,-\infty \lt x \lt \infty,\,\,t\gt 0, }[/math]

subject to the initial conditions

[math]\displaystyle{ \left. u \right|_{t=0} = f(x) }[/math]

We consider the solution along the curve [math]\displaystyle{ (x,t) = (X(t),t) }[/math]. We then have

[math]\displaystyle{ \frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d}X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - x \right) }[/math]

Therefore along the curve [math]\displaystyle{ \frac{\mathrm{d} X}{\mathrm{d}t} = x }[/math] [math]\displaystyle{ u(x,t) }[/math] must be a constant. These are the curves [math]\displaystyle{ x = ce^t }[/math] This means that we have

[math]\displaystyle{ u(x,t) = u(ce^t,t) = u(c,0) = f(c) = f(xe^{-t})\, }[/math]

Therefore the solution is given [math]\displaystyle{ u(x,t) = f(xe^{-t})\, }[/math].

Solution for Example 1 with [math]\displaystyle{ f(x) = e^{-x^2} }[/math]

Example 2

Consider the equation

[math]\displaystyle{ \partial_t u + t \partial_x u = 0,\,\,-\infty \lt x \lt \infty,\,\,t\gt 0, }[/math]

subject to the initial conditions

[math]\displaystyle{ \left. u \right|_{t=0} = f(x) }[/math]

We consider the solution along the curve [math]\displaystyle{ (x,t) = (X(t),t) }[/math]. We then have

[math]\displaystyle{ \frac{\mathrm{d} }{\mathrm{d} t} u(X(t),t) = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d} X}{\mathrm{d}t} - t \right) }[/math]

Therefore along the curve [math]\displaystyle{ \frac{\mathrm{d} X}{\mathrm{d}t} = t }[/math] [math]\displaystyle{ u(x,t) }[/math] must be a constant. These are the curves [math]\displaystyle{ x = t^2/2+c }[/math] This means that we have

[math]\displaystyle{ u(x,t) = u(t^2/2 + c,t) = u(c,0) = f(c) = f(x - t^2/2)\, }[/math]

Therefore the solution is given [math]\displaystyle{ u(x,t) = f(x - t^2/2)\, }[/math].

Non-homogeneous Example

We can also use the method of characteristics in the non-homogeneous case. We show this through an example Consider the equation

[math]\displaystyle{ \partial_t u + t \partial_x u = xt,\,\,-\infty \lt x \lt \infty,\,\,t\gt 0, }[/math]

subject to the initial conditions

[math]\displaystyle{ \left. u \right|_{t=0} = f(x) }[/math]

We consider the solution along the curve [math]\displaystyle{ (x,t) = (X(t),t) }[/math]. We then have

[math]\displaystyle{ \frac{\mathrm{d} u}{\mathrm{d} t} = \partial_t u + \frac{\mathrm{d} X}{\mathrm{d}t}\partial_x u = \partial_x u \left(\frac{\mathrm{d}X}{\mathrm{d}t} - t \right) + xt }[/math]

Therefore along the curve [math]\displaystyle{ \frac{\mathrm{d} X}{\mathrm{d}t} = t }[/math] which are the curves [math]\displaystyle{ x = t^2/2+c }[/math]

[math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}t}u(x,t) = xt = t^3/2 + c t }[/math]


Therefore

[math]\displaystyle{ u(t^2/2+c,t) = t^4/8 + c t^2/2 + c_2\, }[/math]

Now

[math]\displaystyle{ u(c,0) = c_2 = f(c) }[/math]

Therefore the solution is given [math]\displaystyle{ u(x,t) = t^4/8 + (x -t^2/2) t^2/2 + f(x-t^2/2)\, }[/math] or [math]\displaystyle{ u(x,t) = -t^4/8 + x t^2/2 + f(x-t^2/2)\, }[/math]

Lecture Videos

Part 1

Part 2

Part 3


Part 4