Difference between revisions of "Eigenfunction Matching for a Vertical Fixed Plate"

From WikiWaves
Jump to navigationJump to search
(Created page with '{{incomplete pages}} == Introduction == We consider fixed vertical plate and determine scattering using Category:Symmetry in Two Dimensions == Governing Equations == The…')
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{incomplete pages}}
+
{{complete pages}}
  
 
== Introduction ==
 
== Introduction ==
Line 50: Line 50:
 
{{separation of variables for a free surface}}
 
{{separation of variables for a free surface}}
  
=== Expansion of the potential ===
+
{{incident potential for two dimensions}}
  
We need to apply some boundary conditions at plus and minus infinity,
+
== Expansion of the Potential ==
where are essentially the the solution cannot grow. This means that we
 
only have the positive (or negative) roots of the dispersion equation.
 
However, it does not help us with the purely imaginary root. Here we
 
must use a different condition, essentially identifying one solution
 
as the incoming wave and the other as the outgoing wave.
 
  
Therefore the scattered potential (without the incident wave, which will
+
Therefore the potential can
be added later) can
 
 
be expanded as
 
be expanded as
 
<center>
 
<center>
 
<math>
 
<math>
\phi(x,z)=\sum_{m=0}^{\infty}a_{m}e^{k_{m}x}\phi_{m}(z), \;\;x<0
+
\phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x<0
 
</math>
 
</math>
 
</center>
 
</center>
Line 71: Line 65:
 
<math>
 
<math>
 
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
 
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
e^{-\kappa_{m}x}\psi_{m}(z), \;\;x>0
+
e^{-{k}_{m}x}\phi_{m}(z), \;\;x>0
 
</math>
 
</math>
 
</center>
 
</center>
where <math>a_{m}</math> and <math>b_{m}</math>
 
are the coefficients of the potential in the open water and
 
the dock covered region respectively.
 
  
{{incident potential for two dimensions}}
+
== Solution using Symmetry ==
 +
 
 +
The problem is symmetric about the line <math>x=0</math> and this allows us to solve the problem
 +
using symmetry.
 +
We decompose the solution into a symmetric and an anti-symmetric part as is described in
 +
[[:Category:Symmetry in Two Dimensions|Symmetry in Two Dimensions]]
 +
 
 +
=== Symmetric solution ===
 +
The symmetric potential can
 +
be expanded as
 +
<center>
 +
<math>
 +
\phi^{s}(x,z)=e^{-k_{0}(x)}\phi_{0}\left(
 +
z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}(x)}\phi_{m}(z)
 +
, \;\;x<0
 +
</math>
 +
</center>
 +
The boundary condition is that <math>\partial_x \phi = 0</math> on <math>x=0</math>.
 +
The problem reduces to [[Waves reflecting off a vertical wall]].
 +
<math>a_{0}^{s}=1</math> <math>a_{m}^{s}=0,\, \,n >0</math>
  
=== An infinite dimensional system of equations ===
+
=== Anti-symmetric solution ===
  
 +
The anti-symmetric potential can
 +
be expanded as
 +
<center>
 +
<math>
 +
\phi^{a}(x,z)=e^{-k_{0}(x)}\phi_{0}\left(
 +
z\right) + \sum_{m=0}^{\infty}a_{m}^{a}e^{k_{m}(x)}\phi_{m}(z)
 +
, \;\;x<0
 +
</math>
 +
</center>
  
The potential and its derivative must be continuous across the
+
For the anti-symmetric solution the potential satisfies
transition from open water to the plate covered region. Therefore, the
+
<math>\partial_x \phi = 0, -a>z>-b</math> on <math>x=0</math> and
potentials and their derivatives at <math>x=0</math> have to be equal.
+
<math> \phi = 0, 0>z>-a, -b>z>-h</math>. We impose this condition by
We obtain
+
integrating the following
 
<center>
 
<center>
 
<math>
 
<math>
\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}
+
\int_{-h}^{0} \phi_m(z)
a_{m} \phi_{m}\left( z\right)
+
\left\{
=\sum_{m=0}^{\infty}b_{m}\psi_{m}(z)
+
\begin{matrix}
 +
\phi^{a}(0,z),\,\,0>z>-a\,\,-b>z>-h\\
 +
\partial_x\phi^{a}(0,z),\,\,-a>z>-b
 +
\end{matrix}
 +
\right\}
 +
dz = 0
 
</math>
 
</math>
 
</center>
 
</center>
and
+
 
 +
Therefore we have a system of equations of the form
 
<center>
 
<center>
 
<math>
 
<math>
-k_{0}\phi_{0}\left(  z\right)  +\sum
+
\sum_{n=0}^{N} A_{mn} a^{a}_n = f_m
_{m=0}^{\infty} a_{m}k_{m}\phi_{m}\left(  z\right)
 
=-\sum_{m=0}^{\infty}b_{m}\kappa_{m}\psi
 
_{m}(z)
 
 
</math>
 
</math>
 
</center>
 
</center>
for each <math>m</math>.
+
where
We solve these equations by multiplying both equations by
 
<math>\phi_{l}(z) \,</math> and integrating from <math>-h</math> to <math>0</math> to obtain:
 
 
<center>
 
<center>
 
<math>
 
<math>
A_{0}\delta_{0l}+a_{l}A_{l}
+
A_{mn} = \int_{-h}^{-b} \phi_m(z)\phi_n(z) dz +
=\sum_{m=0}^{\infty}b_{m}B_{ml}\,\,\,(3)
+
\int_{-a}^{0} \phi_m(z)\phi_n(z) dz +
 +
\int_{-b}^{-a} k_n \phi_m(z)\phi_n(z) dz
 
</math>
 
</math>
 
</center>
 
</center>
Line 115: Line 136:
 
<center>
 
<center>
 
<math>
 
<math>
-k_{0}A_{0}\delta_{0l}+a_{l}k_{l}A_l
+
f_m = \int_{-h}^{-b} \phi_m(z)\phi_0(z) dz +
=-\sum_{m=0}^{\infty}b_{m}\kappa_{m}B_{ml} \,\,\,(4)
+
\int_{-a}^{0} \phi_m(z)\phi_0(z) dz -
 +
\int_{-b}^{-a} k_0 \phi_m(z)\phi_0(z) dz
 
</math>
 
</math>
 
</center>
 
</center>
If we mutiply equation (3) by <math>k_l \,</math> and subtract equation (4)
+
 
we obtain
+
=== Solution to the original problem ===
 +
 
 +
We can now reconstruct the potential for the finite dock from the two previous symmetric and anti-symmetric solution as explained in
 +
[[:Category:Symmetry in Two Dimensions|Symmetry in Two Dimensions]].
 +
The amplitude in the left open-water region is simply obtained by the superposition principle
 
<center>
 
<center>
 
<math>
 
<math>
(k_{0}+k_l)A_{0}\delta_{0l}
+
a_{m} = \frac{1}{2}\left(a_{m}^{s}+a_{m}^{a}\right)
=\sum_{m=0}^{\infty}b_{m}(k_l + \kappa_{m})B_{ml} \,\,\,(5)
 
 
</math>
 
</math>
 
</center>
 
</center>
This equation gives the required equations to solve for the
+
and in the right open water region is just
coefficients of the water velocity potential in the dock covered region.
+
<center>
 +
<math>
 +
a_{m} = \frac{1}{2}\left(a_{m}^{s} - a_{m}^{a}\right)
 +
</math>
 +
</center>
  
== Numerical Solution ==
+
Therefore the scattered potential (without the incident wave, which will
 
+
be added later) can
To solve the system of equations (3) and (5), we set the upper limit of <math>l</math> to
+
be expanded as
be <math>M</math>. This resulting system can be expressed in the block matrix form below,
+
<center>
 +
<math>
 +
\phi(x,z)= e^{-k_{0}x}\phi_{0} + \sum_{m=0}^{\infty}\frac{1}{2}\left(a_{m}^{s} + a_{m}^{a}\right)
 +
e^{k_{m}x}\phi_{m}(z), \;\;x<0
 +
</math>
 +
</center>
 +
and
 
<center>
 
<center>
 
<math>
 
<math>
\begin{bmatrix}
+
\phi(x,z)=\sum_{m=0}^{\infty}\frac{1}{2}\left(a_{m}^{s} - a_{m}^{a}\right)
\begin{bmatrix}
+
e^{-k_{m}x}\phi_{m}(z), \;\;x>0
A_0&0 \quad \cdots&0\\
 
0&&\\
 
\vdots&A_l&\vdots\\
 
&&0\\
 
0&\cdots \quad 0 &A_M
 
\end{bmatrix}
 
&
 
\begin{bmatrix}
 
-B_{00}&\cdots&-B_{0M}\\
 
&&\\
 
\vdots&-B_{ml}&\vdots\\
 
&&\\
 
-B_{M0}&\cdots&-B_{MM}
 
\end{bmatrix}
 
\\
 
\begin{bmatrix}
 
0&\cdots&0\\
 
\vdots&\ddots&\vdots\\
 
0&\cdots&0
 
\end{bmatrix}
 
&
 
\begin{bmatrix}
 
(k_0 + \kappa_0) \, B_{00}&\cdots&(k_M + \kappa_{0}) \, B_{0M}\\
 
&&\\
 
\vdots&(k_l + \kappa_{m}) \, B_{ml}&\vdots\\
 
&&\\
 
(k_0 + \kappa_M) \, B_{M0}&\cdots&(k_M + \kappa_{M}) \, B_{MM}\\
 
\end{bmatrix}
 
\end{bmatrix}
 
\begin{bmatrix}
 
a_{0} \\
 
a_{1} \\
 
\vdots \\
 
a_M \\
 
\\
 
b_{0}\\
 
b_1 \\
 
\vdots \\
 
\\
 
b_M
 
\end{bmatrix}
 
=
 
\begin{bmatrix}
 
- A_{0} \\
 
0 \\
 
\vdots \\
 
\\
 
0 \\
 
\\
 
2k_{0}A_{0} \\
 
0 \\
 
\vdots \\
 
\\
 
0
 
\end{bmatrix}
 
 
</math>
 
</math>
 
</center>
 
</center>
We then simply need to solve the linear system of equations.
 
  
 
== Solution with Waves Incident at an Angle ==
 
== Solution with Waves Incident at an Angle ==
Line 214: Line 193:
 
<math>
 
<math>
 
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
 
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
e^{-\hat{\kappa}_{m}x}\psi_{m}(z), \;\;x>0
+
e^{-\hat{k}_{m}x}\phi_{m}(z), \;\;x>0
 
</math>
 
</math>
 
</center>
 
</center>
Line 221: Line 200:
  
 
The equations are derived almost identically to those above and we obtain
 
The equations are derived almost identically to those above and we obtain
<center>
 
<math>
 
A_{0}\delta_{0l}+a_{l}A_{l}
 
=\sum_{n=0}^{\infty}b_{m}B_{ml}
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
-\hat{k_{0}}A_{0}\delta_{0l}+a_{l}\hat{k}_{l}A_l
 
=-\sum_{m=0}^{\infty}b_{m}\hat{\kappa}_{m}B_{ml}
 
</math>
 
</center>
 
and these are solved exactly as before.
 
  
 
== Matlab Code ==
 
== Matlab Code ==
  
A program to calculate the coefficients for the semi-infinite dock problems can be found here
+
{{vertical fixed plate code}}
{{semiinfinite_dock code}}
 
  
 
=== Additional code ===
 
=== Additional code ===

Latest revision as of 01:23, 7 April 2010


Introduction

We consider fixed vertical plate and determine scattering using Category:Symmetry in Two Dimensions

Governing Equations

The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. We begin with the Frequency Domain Problem for a fixed vertical plate which occupies the region [math]\displaystyle{ x=0 }[/math] and [math]\displaystyle{ -a\gt z\gt -b }[/math] where [math]\displaystyle{ 0\lt a\lt b\lt h }[/math]. We assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence.

The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \partial_z\phi=0, \,\, z=-h, }[/math]

[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0,\,x\lt 0, }[/math]

[math]\displaystyle{ \partial_x\phi=0, \,\, -a\gt z\gt -b,\,x=0, }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.

Solution Method

We use separation of variables in the two regions, [math]\displaystyle{ x\lt 0 }[/math] and [math]\displaystyle{ x\gt 0 }[/math].

We express the potential as

[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]

and then Laplace's equation becomes

[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]

Separation of variables for a free surface

We use separation of variables

We express the potential as

[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]

and then Laplace's equation becomes

[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]

The separation of variables equation for deriving free surface eigenfunctions is as follows:

[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]

subject to the boundary conditions

[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]

and

[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]

We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write

[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]

where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:

[math]\displaystyle{ k\tan\left( kh\right) =-\alpha \, }[/math]

which is the Dispersion Relation for a Free Surface

The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations

[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]

to arrive at the dispersion relation

[math]\displaystyle{ \alpha = k\tanh kh. }[/math]

We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].

Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as

[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]

Incident potential

To create meaningful solutions of the velocity potential [math]\displaystyle{ \phi }[/math] in the specified domains we add an incident wave term to the expansion for the domain of [math]\displaystyle{ x \lt 0 }[/math] above. The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. We would only see this in the time domain [math]\displaystyle{ \Phi(x,z,t) }[/math] however, in the frequency domain the incident potential can be written as

[math]\displaystyle{ \phi_{\mathrm{I}}(x,z) =e^{-k_{0}x}\chi_{0}\left( z\right). }[/math]

The total velocity (scattered) potential now becomes [math]\displaystyle{ \phi = \phi_{\mathrm{I}} + \phi_{\mathrm{D}} }[/math] for the domain of [math]\displaystyle{ x \lt 0 }[/math].

The first term in the expansion of the diffracted potential for the domain [math]\displaystyle{ x \lt 0 }[/math] is given by

[math]\displaystyle{ a_{0}e^{k_{0}x}\chi_{0}\left( z\right) }[/math]

which represents the reflected wave.

In any scattering problem [math]\displaystyle{ |R|^2 + |T|^2 = 1 }[/math] where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock [math]\displaystyle{ |a_{0}| = |R| = 1 }[/math] and [math]\displaystyle{ |T| = 0 }[/math] as there are no transmitted waves in the region under the dock.

Expansion of the Potential

Therefore the potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-{k}_{m}x}\phi_{m}(z), \;\;x\gt 0 }[/math]

Solution using Symmetry

The problem is symmetric about the line [math]\displaystyle{ x=0 }[/math] and this allows us to solve the problem using symmetry. We decompose the solution into a symmetric and an anti-symmetric part as is described in Symmetry in Two Dimensions

Symmetric solution

The symmetric potential can be expanded as

[math]\displaystyle{ \phi^{s}(x,z)=e^{-k_{0}(x)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}(x)}\phi_{m}(z) , \;\;x\lt 0 }[/math]

The boundary condition is that [math]\displaystyle{ \partial_x \phi = 0 }[/math] on [math]\displaystyle{ x=0 }[/math]. The problem reduces to Waves reflecting off a vertical wall. [math]\displaystyle{ a_{0}^{s}=1 }[/math] [math]\displaystyle{ a_{m}^{s}=0,\, \,n \gt 0 }[/math]

Anti-symmetric solution

The anti-symmetric potential can be expanded as

[math]\displaystyle{ \phi^{a}(x,z)=e^{-k_{0}(x)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{a}e^{k_{m}(x)}\phi_{m}(z) , \;\;x\lt 0 }[/math]

For the anti-symmetric solution the potential satisfies [math]\displaystyle{ \partial_x \phi = 0, -a\gt z\gt -b }[/math] on [math]\displaystyle{ x=0 }[/math] and [math]\displaystyle{ \phi = 0, 0\gt z\gt -a, -b\gt z\gt -h }[/math]. We impose this condition by integrating the following

[math]\displaystyle{ \int_{-h}^{0} \phi_m(z) \left\{ \begin{matrix} \phi^{a}(0,z),\,\,0\gt z\gt -a\,\,-b\gt z\gt -h\\ \partial_x\phi^{a}(0,z),\,\,-a\gt z\gt -b \end{matrix} \right\} dz = 0 }[/math]

Therefore we have a system of equations of the form

[math]\displaystyle{ \sum_{n=0}^{N} A_{mn} a^{a}_n = f_m }[/math]

where

[math]\displaystyle{ A_{mn} = \int_{-h}^{-b} \phi_m(z)\phi_n(z) dz + \int_{-a}^{0} \phi_m(z)\phi_n(z) dz + \int_{-b}^{-a} k_n \phi_m(z)\phi_n(z) dz }[/math]

and

[math]\displaystyle{ f_m = \int_{-h}^{-b} \phi_m(z)\phi_0(z) dz + \int_{-a}^{0} \phi_m(z)\phi_0(z) dz - \int_{-b}^{-a} k_0 \phi_m(z)\phi_0(z) dz }[/math]

Solution to the original problem

We can now reconstruct the potential for the finite dock from the two previous symmetric and anti-symmetric solution as explained in Symmetry in Two Dimensions. The amplitude in the left open-water region is simply obtained by the superposition principle

[math]\displaystyle{ a_{m} = \frac{1}{2}\left(a_{m}^{s}+a_{m}^{a}\right) }[/math]

and in the right open water region is just

[math]\displaystyle{ a_{m} = \frac{1}{2}\left(a_{m}^{s} - a_{m}^{a}\right) }[/math]

Therefore the scattered potential (without the incident wave, which will be added later) can be expanded as

[math]\displaystyle{ \phi(x,z)= e^{-k_{0}x}\phi_{0} + \sum_{m=0}^{\infty}\frac{1}{2}\left(a_{m}^{s} + a_{m}^{a}\right) e^{k_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}\frac{1}{2}\left(a_{m}^{s} - a_{m}^{a}\right) e^{-k_{m}x}\phi_{m}(z), \;\;x\gt 0 }[/math]

Solution with Waves Incident at an Angle

We can consider the problem when the waves are incident at an angle [math]\displaystyle{ \theta }[/math].

When a wave in incident at an angle [math]\displaystyle{ \theta }[/math] we have the wavenumber in the [math]\displaystyle{ y }[/math] direction is [math]\displaystyle{ k_y = \sin\theta k_0 }[/math] where [math]\displaystyle{ k_0 }[/math] is as defined previously (note that [math]\displaystyle{ k_y }[/math] is imaginary).

This means that the potential is now of the form [math]\displaystyle{ \phi(x,y,z)=e^{k_y y}\phi(x,z) }[/math] so that when we separate variables we obtain

[math]\displaystyle{ k^2 = k_x^2 + k_y^2 }[/math]

where [math]\displaystyle{ k }[/math] is the separation constant calculated without an incident angle.

Therefore the potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-\hat{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{\hat{k}_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-\hat{k}_{m}x}\phi_{m}(z), \;\;x\gt 0 }[/math]

where [math]\displaystyle{ \hat{k}_{m} = \sqrt{k_m^2 - k_y^2} }[/math] and [math]\displaystyle{ \hat{\kappa}_{m} = \sqrt{\kappa_m^2 - k_y^2} }[/math] where we always take the positive real root or the root with positive imaginary part.

The equations are derived almost identically to those above and we obtain

Matlab Code

A program to calculate the coefficients for the vertical fixed plate can be found here vertical_fixed_plate.m (note the solution uses symmetry but presents the full solution)

Additional code

This program requires