Difference between revisions of "Two Identical Docks using Symmetry"
(43 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | = Introduction = | + | {{complete pages}} |
+ | |||
+ | == Introduction == | ||
The problems consists three regions | The problems consists three regions | ||
Line 5: | Line 7: | ||
not flow is possible. | not flow is possible. | ||
The solution method is an extension of [[Eigenfunction Matching for a Finite Dock]] | The solution method is an extension of [[Eigenfunction Matching for a Finite Dock]] | ||
− | using [[Two | + | using [[:Category:Symmetry in Two Dimensions|Symmetry in Two Dimensions]]. |
We begin with the simple problem when the waves are normally incident (so that | We begin with the simple problem when the waves are normally incident (so that | ||
− | the problem is truly two-dimensional. We then consider the case when the waves are incident | + | the problem is truly two-dimensional). We then consider the case when the waves are incident |
at an angle. For the later we give the equations in slightly less detail. | at an angle. For the later we give the equations in slightly less detail. | ||
− | =Governing Equations= | + | == Governing Equations == |
We begin with the [[Frequency Domain Problem]] for a dock which occupies | We begin with the [[Frequency Domain Problem]] for a dock which occupies | ||
− | the region <math>x>0</math>. | + | the region <math>x>0</math> (we assume <math>e^{i\omega t}</math> time dependence). |
The water is assumed to have | The water is assumed to have | ||
constant finite depth <math>h</math> and the <math>z</math>-direction points vertically | constant finite depth <math>h</math> and the <math>z</math>-direction points vertically | ||
Line 36: | Line 38: | ||
</math> | </math> | ||
</center> | </center> | ||
− | where we require <math>L_1<L_2</math> and we define <math>L_2 - L_1 = | + | where we require <math>L_1<L_2</math> and we define <math>L_2 - L_1 = 2L</math> |
+ | (so that the dock also has length <math>2L</math>). | ||
+ | |||
We must also apply the [[Sommerfeld Radiation Condition]] | We must also apply the [[Sommerfeld Radiation Condition]] | ||
as <math>|x|\rightarrow\infty</math>. This essentially implies | as <math>|x|\rightarrow\infty</math>. This essentially implies | ||
Line 42: | Line 46: | ||
and a wave propagating away. | and a wave propagating away. | ||
− | =Solution Method= | + | == Solution Method == |
+ | |||
+ | We begin by separating variables in the different regions. | ||
+ | |||
+ | {{separation of variables in two dimensions}} | ||
− | The solution method uses [[Two | + | {{separation of variables for a free surface}} |
+ | |||
+ | {{separation of variables for a dock}} | ||
+ | |||
+ | {{free surface dock relations}} | ||
+ | |||
+ | {{incident potential for two dimensions}} | ||
+ | |||
+ | === Expansion of the potential === | ||
+ | The solution method uses [[:Category:Symmetry in Two Dimensions|Symmetry in Two Dimensions]] and we write the potential as | ||
a symmetric and an anti-symmetric part and consider only the region <math>x<0</math>. We apply | a symmetric and an anti-symmetric part and consider only the region <math>x<0</math>. We apply | ||
either Neuman (symmetric) or Dirichlet (anti-symmetric) boundary conditions at <math>x=0</math>. | either Neuman (symmetric) or Dirichlet (anti-symmetric) boundary conditions at <math>x=0</math>. | ||
Line 58: | Line 75: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \phi(x,z)=b^s_0 \frac{x+L_1}{ | + | \phi(x,z)=b^s_0 \frac{x+L_1}{-2L}\psi_{0}(z) + \sum_{m=1}^{\infty}b^s_{m} |
e^{-\kappa_{m} (x+L_2)}\psi_{m}(z) | e^{-\kappa_{m} (x+L_2)}\psi_{m}(z) | ||
− | +c^s_0 \frac{ | + | +c^s_0 \frac{L_2+x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}c^s_{m} |
e^{\kappa_{m} (x+L_1)}\psi_{m}(z) | e^{\kappa_{m} (x+L_1)}\psi_{m}(z) | ||
, \;\;-L_2<x<L_1 | , \;\;-L_2<x<L_1 | ||
Line 68: | Line 85: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \phi(x,z)=\sum_{m=0}^{\infty}d^s_{m} | + | \phi(x,z)=\sum_{m=0}^{\infty}d^s_{m} \frac{\cosh(k_{m}x)}{\cosh(k_m L_1)} \phi_{m}(z), \;\;-L_1<x<0 |
− | \ | ||
</math> | </math> | ||
</center> | </center> | ||
Line 75: | Line 91: | ||
are the coefficients of the potential in the open water regions to the | are the coefficients of the potential in the open water regions to the | ||
left and right and <math>b^s_m</math> and <math>c^s_m</math> are the coefficients under the dock. | left and right and <math>b^s_m</math> and <math>c^s_m</math> are the coefficients under the dock. | ||
− | + | ||
− | + | === An infinite dimensional system of equations === | |
− | + | ||
− | + | The potential and its derivative must be continuous across the | |
− | + | transition from open water to the plate covered region. Therefore, the | |
− | <math> | + | potentials and their derivatives at <math>x=- L_2</math> and |
+ | <math>x=-L_1</math> have to be equal. | ||
+ | We obtain | ||
<center> | <center> | ||
<math> | <math> | ||
− | \phi_{m}\left( z\right) | + | \phi_{0}\left( z\right) + \sum_{m=0}^{\infty} |
+ | a^s_{m} \phi_{m}\left( z\right) | ||
+ | =\sum_{m=0}^{\infty}b^s_{m}\psi_{m}(z) + \sum_{m=1}^{\infty}c^s_{m}\psi_{m}(z)e^{-2L\kappa_m} | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | -k_{0}\phi_{0}\left( z\right) +\sum |
− | m\ | + | _{m=0}^{\infty} a^s_{m}k_{m}\phi_{m}\left( z\right) |
+ | =-\frac{b^s_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b^s_{m}\kappa_{m}\psi | ||
+ | _{m}(z) + \frac{c^s_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c^s_{m}\kappa_{m}\psi | ||
+ | _{m}(z)e^{-2L\kappa_m} | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | \sum_{m=1}^{\infty}b^s_{m}\psi_{m}(z)e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z) |
+ | =\sum_{m=0}^{\infty}d^s_{m} \phi_{m}\left( z\right) | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | -\frac{b^s_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b^s_{m}\kappa_{m}\psi | |
− | ^{ | + | _{m}(z)e^{-2L\kappa_m} + \frac{c^s_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c^s_{m}\kappa_{m}\psi |
+ | _{m}(z) | ||
+ | = \sum_{m=0}^{\infty}d^s_{m} \tanh(k_m L_1) k_m\phi_{m}\left( z\right) | ||
</math> | </math> | ||
</center> | </center> | ||
− | and | + | |
+ | We solve these equations by multiplying both equations by | ||
+ | <math>\phi_{l}(z)</math> and integrating from <math>-h</math> to <math>0</math> to obtain: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | A_{0}\delta_{0l}+a^s_{l}A_{l} |
+ | =\sum_{m=0}^{\infty}b^s_{m}B_{ml} | ||
+ | + \sum_{m=1}^{\infty}c^s_{m}B_{ml}e^{-2L\kappa_m} | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | -k_{0}A_{0}\delta_{0l}+a^s_{l}k_{l}A_l |
+ | = - b^s_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^s_{m}\kappa_{m}B_{ml} | ||
+ | + c^s_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^s_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | \sum_{m=1}^{\infty}b^s_{m}B_{ml}e^{-2L\kappa_m} | |
− | + | + \sum_{m=0}^{\infty}c^s_{m}B_{ml} | |
− | + | =d^s_l A_l | |
− | = | + | </math> |
− | + | </center> | |
− | |||
− | |||
− | |||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | - b^s_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^s_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} |
− | + | + c^s_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^s_{m}\kappa_{m}B_{ml} | |
− | + | = d^s_l \tanh(k_l L_1) k_l A_l | |
</math> | </math> | ||
</center> | </center> | ||
+ | |||
+ | == Numerical Solution == | ||
+ | |||
+ | To solve the system of equations we set the upper limit of <math>l</math> to | ||
+ | be <math>M</math>. We then simply need to solve the linear system of equations. | ||
+ | |||
+ | == Anti-Symmetric Solution == | ||
+ | |||
+ | The solution for the anti-symmetric potential proceeds in an almost identical manner. | ||
+ | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | \phi^a(x,z)=e^{-k_{0}(x+L_2)}\phi_{0}\left( | |
− | + | z\right) + \sum_{m=0}^{\infty}a^a_{m}e^{k_{m}(x+L_2)}\phi_{m}(z), \;\;x<-L_2 | |
− | |||
− | |||
− | |||
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | \sum_{m=1}^{\infty}b^ | + | \phi(x,z)=b^a_0 \frac{x+L_1}{-2L}\psi_{0}(z) + \sum_{m=1}^{\infty}b^a_{m} |
− | + | e^{-\kappa_{m} (x+L_2)}\psi_{m}(z) | |
+ | +c^a_0 \frac{L_2+x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}c^a_{m} | ||
+ | e^{\kappa_{m} (x+L_1)}\psi_{m}(z) | ||
+ | , \;\;-L_2<x<L_1 | ||
</math> | </math> | ||
</center> | </center> | ||
+ | and | ||
<center> | <center> | ||
<math> | <math> | ||
− | + | \phi(x,z)=\sum_{m=0}^{\infty}d^a_{m} \frac{\sinh(k_{m}x)}{-\sinh(k_m L_1)} \phi_{m}(z), \;\;-L_1<x<0 | |
− | |||
− | |||
− | |||
</math> | </math> | ||
</center> | </center> | ||
− | + | where <math>a^a_{m}</math> and <math>d^a_{m}</math> | |
+ | are the coefficients of the potential in the open water regions to the | ||
+ | left and right and <math>b^a_m</math> and <math>c^a_m</math> are the coefficients under the dock. | ||
+ | |||
We solve these equations by multiplying both equations by | We solve these equations by multiplying both equations by | ||
<math>\phi_{l}(z)</math> and integrating from <math>-h</math> to <math>0</math> to obtain: | <math>\phi_{l}(z)</math> and integrating from <math>-h</math> to <math>0</math> to obtain: | ||
<center> | <center> | ||
<math> | <math> | ||
− | A_{0}\delta_{0l}+a_{l}A_{l} | + | A_{0}\delta_{0l}+a^a_{l}A_{l} |
− | =\sum_{m=0}^{\infty} | + | =\sum_{m=0}^{\infty}b^a_{m}B_{ml} |
− | + \sum_{m=1}^{\infty} | + | + \sum_{m=1}^{\infty}c^a_{m}B_{ml}e^{-2L\kappa_m} |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | -k_{0}A_{0}\delta_{0l}+a_{l}k_{l}A_l | + | -k_{0}A_{0}\delta_{0l}+a^a_{l}k_{l}A_l |
− | = - | + | = - b^a_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^a_{m}\kappa_{m}B_{ml} |
− | + | + | + c^a_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^a_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | \sum_{m=1}^{\infty} | + | \sum_{m=1}^{\infty}b^a_{m}B_{ml}e^{-2L\kappa_m} |
− | + \sum_{m=0}^{\infty} | + | + \sum_{m=0}^{\infty}c^a_{m}B_{ml} |
− | = | + | =d^a_l A_l |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | - | + | - b^a_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^a_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} |
− | + | + | + c^a_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^a_{m}\kappa_{m}B_{ml} |
− | = | + | = d^a_l \frac{k_l A_l}{\tanh(k_l L_1)} |
</math> | </math> | ||
</center> | </center> | ||
− | = | + | == Solution with Waves Incident at an Angle == |
− | + | We can consider the problem when the waves are incident at an angle <math>\theta</math>. In some | |
− | |||
− | |||
− | |||
− | |||
− | We can consider the problem when the waves are incident at an angle <math>\theta</math> | ||
− | |||
− | |||
ways the solution is now simpler because we do not need to write the zero term separately | ways the solution is now simpler because we do not need to write the zero term separately | ||
under the dock. | under the dock. | ||
+ | {{incident angle}} | ||
− | This means that the potential is now of the form <math>\phi(x,y,z)=e^{k_y y}\phi(x,z)</math> | + | This means that the potential is now of the form <math>\phi(x,y,z)=e^{k_y y}\phi(x,z)</math>. |
− | + | Therefore the symmetric potential can | |
− | |||
− | Therefore the potential can | ||
be expanded as | be expanded as | ||
<center> | <center> | ||
<math> | <math> | ||
− | \phi( | + | \phi^{s}_{0}\left( z\right) + \sum_{m=0}^{\infty} |
− | z\right) + \ | + | a^s_{m} \phi_{m}\left( z\right) |
+ | =\sum_{m=0}^{\infty}b^s_{m}\psi_{m}(z) + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z)e^{-2L\hat{\kappa}_m} | ||
+ | </math> | ||
+ | </center> | ||
+ | <center> | ||
+ | <math> | ||
+ | -\hat{k}_{0}\phi_{0}\left( z\right) +\sum | ||
+ | _{m=0}^{\infty} a^s_{m}\hat{k}_{m}\phi_{m}\left( z\right) | ||
+ | = -\sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}\psi | ||
+ | _{m}(z) +\sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}\psi | ||
+ | _{m}(z)e^{-2L\hat{\kappa}_m} | ||
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | + | \sum_{m=1}^{\infty}b^s_{m}\psi_{m}(z)e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z) | |
− | e^{-\hat{\kappa} | + | =\sum_{m=0}^{\infty}d^s_{m} \phi_{m}\left( z\right) |
− | |||
− | |||
− | |||
</math> | </math> | ||
</center> | </center> | ||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | -\sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}\psi | |
− | e^{-\hat{ | + | _{m}(z)e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}\psi |
+ | _{m}(z) | ||
+ | = \sum_{m=0}^{\infty}d^s_{m} \tanh(\hat{k}_m L_1) \hat{k}_m\phi_{m}\left( z\right) | ||
</math> | </math> | ||
</center> | </center> | ||
where <math>\hat{k}_{m} = \sqrt{k_m^2 + k_y^2}</math> and <math>\hat{\kappa}_{m} = \sqrt{\kappa_m^2 + k_y^2}</math> | where <math>\hat{k}_{m} = \sqrt{k_m^2 + k_y^2}</math> and <math>\hat{\kappa}_{m} = \sqrt{\kappa_m^2 + k_y^2}</math> | ||
− | + | and we always take the positive real root or the root with positive imaginary part. | |
− | + | We solve these equations by multiplying both equations by | |
+ | <math>\phi_{l}(z)</math> and integrating from <math>-h</math> to <math>0</math> to obtain: | ||
<center> | <center> | ||
<math> | <math> | ||
− | A_{0}\delta_{0l}+ | + | A_{0}\delta_{0l}+a^s_{l}A_{l} |
− | =\sum_{m=0}^{\infty} | + | =\sum_{m=0}^{\infty}b^s_{m}B_{ml} |
− | + \sum_{m=0}^{\infty} | + | + \sum_{m=0}^{\infty}c^s_{m}B_{ml}e^{-2L\hat{\kappa}_m} |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | -\hat{k}_{0}A_{0}\delta_{0l}+ | + | -\hat{k}_{0}A_{0}\delta_{0l}+a^s_{l}\hat{k}_{l}A_l |
− | = | + | = - \sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}B_{ml} |
− | + \sum_{m=0}^{\infty} | + | + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}} |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | \sum_{m=0}^{\infty} | + | \sum_{m=0}^{\infty}b^s_{m}B_{ml}e^{-2L\hat{\kappa}_m} |
− | + \sum_{m=0}^{\infty} | + | + \sum_{m=0}^{\infty}c^s_{m}B_{ml} |
− | = | + | =d^s_l A_l |
</math> | </math> | ||
</center> | </center> | ||
<center> | <center> | ||
<math> | <math> | ||
− | -\sum_{m=0}^{\infty} | + | - \sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}_m} |
− | + \sum_{m=0}^{\infty} | + | + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}B_{ml} |
− | = | + | = d^s_l \tanh(\hat{k}_l L_1) \hat{k}_l A_l |
</math> | </math> | ||
</center> | </center> | ||
− | and these are solved exactly as before. | + | and these are solved exactly as before. The solution for the anti-symmetric |
+ | potential is found in a similar fashion. | ||
− | = Matlab Code = | + | == Matlab Code == |
− | + | {{two docks eigenfunction matching symmetry}} | |
− | |||
− | == Additional code == | + | === Additional code === |
This program requires | This program requires | ||
− | + | * {{free surface dispersion equation code}} | |
− | |||
[[Category:Eigenfunction Matching Method]] | [[Category:Eigenfunction Matching Method]] | ||
[[Category:Pages with Matlab Code]] | [[Category:Pages with Matlab Code]] | ||
+ | [[Category:Symmetry in Two Dimensions]] | ||
+ | [[Category:Complete Pages]] |
Latest revision as of 23:29, 14 February 2010
Introduction
The problems consists three regions with a free surface and and two regions of identical length with a rigid surface through which not flow is possible. The solution method is an extension of Eigenfunction Matching for a Finite Dock using Symmetry in Two Dimensions. We begin with the simple problem when the waves are normally incident (so that the problem is truly two-dimensional). We then consider the case when the waves are incident at an angle. For the later we give the equations in slightly less detail.
Governing Equations
We begin with the Frequency Domain Problem for a dock which occupies the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as
[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]
[math]\displaystyle{ \partial_z\phi=0, \,\, z=0,\,-L_2\lt x\lt -L_1, {\rm or} \, L_1\lt x\lt L_2, }[/math]
where we require [math]\displaystyle{ L_1\lt L_2 }[/math] and we define [math]\displaystyle{ L_2 - L_1 = 2L }[/math] (so that the dock also has length [math]\displaystyle{ 2L }[/math]).
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.
Solution Method
We begin by separating variables in the different regions.
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
Separation of variables for a free surface
We use separation of variables
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
The separation of variables equation for deriving free surface eigenfunctions is as follows:
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]
We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:
which is the Dispersion Relation for a Free Surface
The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations
[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]
to arrive at the dispersion relation
[math]\displaystyle{ \alpha = k\tanh kh. }[/math]
We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].
Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as
[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]
Separation of Variables for a Dock
The separation of variables equation for a floating dock
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0, }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime} (-h) = 0, }[/math]
and
[math]\displaystyle{ Z^{\prime} (0) = 0. }[/math]
The solution is [math]\displaystyle{ k=\kappa_{m}= \frac{m\pi}{h} \, }[/math], [math]\displaystyle{ m\geq 0 }[/math] and
[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0. }[/math]
We note that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) \mathrm{d} z=C_{m}\delta_{mn}, }[/math]
where
[math]\displaystyle{ C_{m} = \begin{cases} h,\quad m=0 \\ \frac{1}{2}h,\,\,\,m\neq 0 \end{cases} }[/math]
Inner product between free surface and dock modes
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{n}(z)\psi_{m}(z) \mathrm{d} z=B_{mn} }[/math]
where
Incident potential
To create meaningful solutions of the velocity potential [math]\displaystyle{ \phi }[/math] in the specified domains we add an incident wave term to the expansion for the domain of [math]\displaystyle{ x \lt 0 }[/math] above. The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. We would only see this in the time domain [math]\displaystyle{ \Phi(x,z,t) }[/math] however, in the frequency domain the incident potential can be written as
[math]\displaystyle{ \phi_{\mathrm{I}}(x,z) =e^{-k_{0}x}\chi_{0}\left( z\right). }[/math]
The total velocity (scattered) potential now becomes [math]\displaystyle{ \phi = \phi_{\mathrm{I}} + \phi_{\mathrm{D}} }[/math] for the domain of [math]\displaystyle{ x \lt 0 }[/math].
The first term in the expansion of the diffracted potential for the domain [math]\displaystyle{ x \lt 0 }[/math] is given by
[math]\displaystyle{ a_{0}e^{k_{0}x}\chi_{0}\left( z\right) }[/math]
which represents the reflected wave.
In any scattering problem [math]\displaystyle{ |R|^2 + |T|^2 = 1 }[/math] where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock [math]\displaystyle{ |a_{0}| = |R| = 1 }[/math] and [math]\displaystyle{ |T| = 0 }[/math] as there are no transmitted waves in the region under the dock.
Expansion of the potential
The solution method uses Symmetry in Two Dimensions and we write the potential as a symmetric and an anti-symmetric part and consider only the region [math]\displaystyle{ x\lt 0 }[/math]. We apply either Neuman (symmetric) or Dirichlet (anti-symmetric) boundary conditions at [math]\displaystyle{ x=0 }[/math]. We separation of variables in the three regions, similar to as for the Eigenfunction Matching for a Finite Dock. We being with the symmetric potential which can be expanded as
[math]\displaystyle{ \phi^s(x,z)=e^{-k_{0}(x+L_2)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a^s_{m}e^{k_{m}(x+L_2)}\phi_{m}(z), \;\;x\lt -L_2 }[/math]
[math]\displaystyle{ \phi(x,z)=b^s_0 \frac{x+L_1}{-2L}\psi_{0}(z) + \sum_{m=1}^{\infty}b^s_{m} e^{-\kappa_{m} (x+L_2)}\psi_{m}(z) +c^s_0 \frac{L_2+x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}c^s_{m} e^{\kappa_{m} (x+L_1)}\psi_{m}(z) , \;\;-L_2\lt x\lt L_1 }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}d^s_{m} \frac{\cosh(k_{m}x)}{\cosh(k_m L_1)} \phi_{m}(z), \;\;-L_1\lt x\lt 0 }[/math]
where [math]\displaystyle{ a^s_{m} }[/math] and [math]\displaystyle{ d^s_{m} }[/math] are the coefficients of the potential in the open water regions to the left and right and [math]\displaystyle{ b^s_m }[/math] and [math]\displaystyle{ c^s_m }[/math] are the coefficients under the dock.
An infinite dimensional system of equations
The potential and its derivative must be continuous across the transition from open water to the plate covered region. Therefore, the potentials and their derivatives at [math]\displaystyle{ x=- L_2 }[/math] and [math]\displaystyle{ x=-L_1 }[/math] have to be equal. We obtain
[math]\displaystyle{ \phi_{0}\left( z\right) + \sum_{m=0}^{\infty} a^s_{m} \phi_{m}\left( z\right) =\sum_{m=0}^{\infty}b^s_{m}\psi_{m}(z) + \sum_{m=1}^{\infty}c^s_{m}\psi_{m}(z)e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ -k_{0}\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a^s_{m}k_{m}\phi_{m}\left( z\right) =-\frac{b^s_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b^s_{m}\kappa_{m}\psi _{m}(z) + \frac{c^s_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c^s_{m}\kappa_{m}\psi _{m}(z)e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b^s_{m}\psi_{m}(z)e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z) =\sum_{m=0}^{\infty}d^s_{m} \phi_{m}\left( z\right) }[/math]
[math]\displaystyle{ -\frac{b^s_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b^s_{m}\kappa_{m}\psi _{m}(z)e^{-2L\kappa_m} + \frac{c^s_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c^s_{m}\kappa_{m}\psi _{m}(z) = \sum_{m=0}^{\infty}d^s_{m} \tanh(k_m L_1) k_m\phi_{m}\left( z\right) }[/math]
We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a^s_{l}A_{l} =\sum_{m=0}^{\infty}b^s_{m}B_{ml} + \sum_{m=1}^{\infty}c^s_{m}B_{ml}e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ -k_{0}A_{0}\delta_{0l}+a^s_{l}k_{l}A_l = - b^s_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^s_{m}\kappa_{m}B_{ml} + c^s_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^s_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b^s_{m}B_{ml}e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c^s_{m}B_{ml} =d^s_l A_l }[/math]
[math]\displaystyle{ - b^s_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^s_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} + c^s_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^s_{m}\kappa_{m}B_{ml} = d^s_l \tanh(k_l L_1) k_l A_l }[/math]
Numerical Solution
To solve the system of equations we set the upper limit of [math]\displaystyle{ l }[/math] to be [math]\displaystyle{ M }[/math]. We then simply need to solve the linear system of equations.
Anti-Symmetric Solution
The solution for the anti-symmetric potential proceeds in an almost identical manner.
[math]\displaystyle{ \phi^a(x,z)=e^{-k_{0}(x+L_2)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a^a_{m}e^{k_{m}(x+L_2)}\phi_{m}(z), \;\;x\lt -L_2 }[/math]
[math]\displaystyle{ \phi(x,z)=b^a_0 \frac{x+L_1}{-2L}\psi_{0}(z) + \sum_{m=1}^{\infty}b^a_{m} e^{-\kappa_{m} (x+L_2)}\psi_{m}(z) +c^a_0 \frac{L_2+x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}c^a_{m} e^{\kappa_{m} (x+L_1)}\psi_{m}(z) , \;\;-L_2\lt x\lt L_1 }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}d^a_{m} \frac{\sinh(k_{m}x)}{-\sinh(k_m L_1)} \phi_{m}(z), \;\;-L_1\lt x\lt 0 }[/math]
where [math]\displaystyle{ a^a_{m} }[/math] and [math]\displaystyle{ d^a_{m} }[/math] are the coefficients of the potential in the open water regions to the left and right and [math]\displaystyle{ b^a_m }[/math] and [math]\displaystyle{ c^a_m }[/math] are the coefficients under the dock.
We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a^a_{l}A_{l} =\sum_{m=0}^{\infty}b^a_{m}B_{ml} + \sum_{m=1}^{\infty}c^a_{m}B_{ml}e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ -k_{0}A_{0}\delta_{0l}+a^a_{l}k_{l}A_l = - b^a_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^a_{m}\kappa_{m}B_{ml} + c^a_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^a_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b^a_{m}B_{ml}e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c^a_{m}B_{ml} =d^a_l A_l }[/math]
[math]\displaystyle{ - b^a_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b^a_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} + c^a_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c^a_{m}\kappa_{m}B_{ml} = d^a_l \frac{k_l A_l}{\tanh(k_l L_1)} }[/math]
Solution with Waves Incident at an Angle
We can consider the problem when the waves are incident at an angle [math]\displaystyle{ \theta }[/math]. In some ways the solution is now simpler because we do not need to write the zero term separately under the dock. When a wave in incident at an angle [math]\displaystyle{ \theta }[/math] we have the wavenumber in the [math]\displaystyle{ y }[/math] direction is [math]\displaystyle{ k_y = \sin\theta k_0 }[/math] where [math]\displaystyle{ k_0 }[/math] is as defined previously (note that [math]\displaystyle{ k_y }[/math] is imaginary).
This means that the potential is now of the form [math]\displaystyle{ \phi(x,y,z)=e^{k_y y}\phi(x,z) }[/math] so that when we separate variables we obtain
[math]\displaystyle{ k^2 = k_x^2 + k_y^2 }[/math]
where [math]\displaystyle{ k }[/math] is the separation constant calculated without an incident angle.
This means that the potential is now of the form [math]\displaystyle{ \phi(x,y,z)=e^{k_y y}\phi(x,z) }[/math]. Therefore the symmetric potential can be expanded as
[math]\displaystyle{ \phi^{s}_{0}\left( z\right) + \sum_{m=0}^{\infty} a^s_{m} \phi_{m}\left( z\right) =\sum_{m=0}^{\infty}b^s_{m}\psi_{m}(z) + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z)e^{-2L\hat{\kappa}_m} }[/math]
[math]\displaystyle{ -\hat{k}_{0}\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a^s_{m}\hat{k}_{m}\phi_{m}\left( z\right) = -\sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}\psi _{m}(z) +\sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}\psi _{m}(z)e^{-2L\hat{\kappa}_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b^s_{m}\psi_{m}(z)e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}\psi_{m}(z) =\sum_{m=0}^{\infty}d^s_{m} \phi_{m}\left( z\right) }[/math]
[math]\displaystyle{ -\sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}\psi _{m}(z)e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}\psi _{m}(z) = \sum_{m=0}^{\infty}d^s_{m} \tanh(\hat{k}_m L_1) \hat{k}_m\phi_{m}\left( z\right) }[/math]
where [math]\displaystyle{ \hat{k}_{m} = \sqrt{k_m^2 + k_y^2} }[/math] and [math]\displaystyle{ \hat{\kappa}_{m} = \sqrt{\kappa_m^2 + k_y^2} }[/math] and we always take the positive real root or the root with positive imaginary part.
We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a^s_{l}A_{l} =\sum_{m=0}^{\infty}b^s_{m}B_{ml} + \sum_{m=0}^{\infty}c^s_{m}B_{ml}e^{-2L\hat{\kappa}_m} }[/math]
[math]\displaystyle{ -\hat{k}_{0}A_{0}\delta_{0l}+a^s_{l}\hat{k}_{l}A_l = - \sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}B_{ml} + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}} }[/math]
[math]\displaystyle{ \sum_{m=0}^{\infty}b^s_{m}B_{ml}e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}B_{ml} =d^s_l A_l }[/math]
[math]\displaystyle{ - \sum_{m=0}^{\infty}b^s_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c^s_{m}\hat{\kappa}_{m}B_{ml} = d^s_l \tanh(\hat{k}_l L_1) \hat{k}_l A_l }[/math]
and these are solved exactly as before. The solution for the anti-symmetric potential is found in a similar fashion.
Matlab Code
A program to calculate the coefficients for the finite dock problems can be found here two_finite_docks_symmetry.m
Additional code
This program requires