Difference between revisions of "Eigenfunction Matching for a Finite Dock"
Line 288: | Line 288: | ||
[http://www.math.auckland.ac.nz/~meylan/code/dispersion/dispersion_free_surface.m dispersion_free_surface.m] | [http://www.math.auckland.ac.nz/~meylan/code/dispersion/dispersion_free_surface.m dispersion_free_surface.m] | ||
to run | to run | ||
− | |||
− | |||
− | |||
− | |||
= Solution using Symmetry = | = Solution using Symmetry = | ||
Line 416: | Line 412: | ||
</math> | </math> | ||
</center> | </center> | ||
+ | |||
+ | [[Category:Eigenfunction Matching Method]] | ||
+ | [[Category:Pages with Matlab Code]] | ||
+ | [[Category:Symmetry in Two Dimensions]] |
Revision as of 23:20, 4 July 2008
Introduction
The problems consists of a region to the left and right with a free surface and a middle region with a rigid surface through which not flow is possible. We begin with the simple problem when the waves are normally incident (so that the problem is truly two-dimensional). We then consider the case when the waves are incident at an angle. For the later we give the equations in slightly less detail. The theory is based on Eigenfunction Matching for a Semi-Infinite Dock and this should be consulted for many details. The solution here can be straightforwardly extended using Symmetry in Two Dimensions to two docks of the same length and this can be found Two Identical Docks using Symmetry. We also show how the solution can be found using Symmetry in Two Dimensions for the finite dock.
Governing Equations
We consider here the Frequency Domain Problem for a finite dock which occupies the region [math]\displaystyle{ -L\lt x\lt L }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as
[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]
[math]\displaystyle{ \partial_z\phi=0, \,\, z=0,\,-L\lt x\lt L, }[/math]
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.
Solution Method
We use separation of variables in the three regions, exactly as for the Eigenfunction Matching for a Semi-Infinite Dock. The potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{0}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}e^{k_{m}(x+L)}\phi_{m}(z), \;\;x\lt -L }[/math]
[math]\displaystyle{ \phi(x,z)=b_0 \frac{L-x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}b_{m} e^{-\kappa_{m} (x+L)}\psi_{m}(z) +c_0 \frac{L+x}{2L}\psi_{0}(z) + \sum_{m=1}^{\infty}c_{m} e^{\kappa_{m} (x-L)}\psi_{m}(z) , \;\;-L\lt x\lt L }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}d_{m} e^{-k_{m}(x-L)}\phi_{m}(z), \;\;L\lt x }[/math]
where [math]\displaystyle{ a_{m} }[/math] and [math]\displaystyle{ d_{m} }[/math] are the coefficients of the potential in the open water regions to the left and right and [math]\displaystyle{ c_m }[/math] and [math]\displaystyle{ d_m }[/math] are the coefficients under the dock covered region. We have an incident wave from the left. [math]\displaystyle{ k_n }[/math] are the roots of the Dispersion Relation for a Free Surface. We denote the positive imaginary solutions by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math] (ordered with increasing imaginary part) and [math]\displaystyle{ \kappa_{m}=m\pi/h }[/math]. We define
[math]\displaystyle{ \phi_{m}\left( z\right) = \frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region and
[math]\displaystyle{ \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]
as the vertical eigenfunction of the potential in the dock covered region. For later reference, we note that:
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}h\sin k_{m}h+k_{m}h}{k_{m}\cos ^{2}k_{m}h}\right) }[/math]
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn} }[/math]
where
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where
An infinite dimensional system of equations
The potential and its derivative must be continuous across the transition from open water to the plate covered region. Therefore, the potentials and their derivatives at [math]\displaystyle{ x=\pm L }[/math] have to be equal. We obtain
[math]\displaystyle{ \phi_{0}\left( z\right) + \sum_{m=0}^{\infty} a_{m} \phi_{m}\left( z\right) =\sum_{m=0}^{\infty}b_{m}\psi_{m}(z) + \sum_{m=1}^{\infty}c_{m}\psi_{m}(z)e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ -k_{0}\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a_{m}k_{m}\phi_{m}\left( z\right) =-\frac{b_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b_{m}\kappa_{m}\psi _{m}(z) + \frac{c_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c_{m}\kappa_{m}\psi _{m}(z)e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b_{m}\psi_{m}(z)e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c_{m}\psi_{m}(z) =\sum_{m=0}^{\infty}d_{m} \phi_{m}\left( z\right) }[/math]
[math]\displaystyle{ -\frac{b_0}{2L}\psi_0(z) -\sum_{m=1}^{\infty}b_{m}\kappa_{m}\psi _{m}(z)e^{-2L\kappa_m} + \frac{c_0}{2L}\psi_0(z)+\sum_{m=1}^{\infty}c_{m}\kappa_{m}\psi _{m}(z) = -\sum_{m=0}^{\infty}d_{m} k_m\phi_{m}\left( z\right) }[/math]
We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}A_{l} =\sum_{m=0}^{\infty}b_{m}B_{ml} + \sum_{m=1}^{\infty}c_{m}B_{ml}e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ -k_{0}A_{0}\delta_{0l}+a_{l}k_{l}A_l = - b_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b_{m}\kappa_{m}B_{ml} + c_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} }[/math]
[math]\displaystyle{ \sum_{m=1}^{\infty}b_{m}B_{ml}e^{-2L\kappa_m} + \sum_{m=0}^{\infty}c_{m}B_{ml} =d_l A_l }[/math]
[math]\displaystyle{ - b_0 \frac{B_{0l}}{2L} - \sum_{m=1}^{\infty}b_{m}\kappa_{m}B_{ml} e^{-2L\kappa_m} + c_0 \frac{B_{0l}}{2L} + \sum_{m=1}^{\infty}c_{m}\kappa_{m}B_{ml} = -d_l k_l A_l }[/math]
Numerical Solution
To solve the system of equations we set the upper limit of [math]\displaystyle{ l }[/math] to be [math]\displaystyle{ M }[/math]. We then simply need to solve the linear system of equations.
Solution with Waves Incident at an Angle
We can consider the problem when the waves are incident at an angle [math]\displaystyle{ \theta }[/math]. In this case we have the wavenumber in the [math]\displaystyle{ y }[/math] direction is [math]\displaystyle{ k_y = \sin\theta k_0 }[/math] where [math]\displaystyle{ k_0 }[/math] is as defined previously (note that [math]\displaystyle{ k_y }[/math] is imaginary). In some ways the solution is now simpler because we do not need to write the zero term separately under the dock.
This means that the potential is now of the form [math]\displaystyle{ \phi(x,y,z)=e^{k_y y}\phi(x,z) }[/math] so that when we separate variables we obtain
Therefore the potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{0}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}e^{\hat{k}_{m}(x+L)}\phi_{m}(z), \;\;x\lt -L }[/math]
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-\hat{\kappa}_{m} (x+L)}\psi_{m}(z) ++ \sum_{m=1}^{\infty}c_{m} e^{\hat{\kappa}_{m} (x-L)}\psi_{m}(z) , \;\;-L\lt x\lt L }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}d_{m} e^{-\hat{k}_{m}(x-L)}\phi_{m}(z), \;\;L\lt x }[/math]
where [math]\displaystyle{ \hat{k}_{m} = \sqrt{k_m^2 + k_y^2} }[/math] and [math]\displaystyle{ \hat{\kappa}_{m} = \sqrt{\kappa_m^2 + k_y^2} }[/math] where we always take the positive real root or the root with positive imaginary part.
The equations are derived almost identically to those above and we obtain
[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}A_{l} =\sum_{m=0}^{\infty}b_{m}B_{ml} + \sum_{m=0}^{\infty}c_{m}B_{ml}e^{-2L\hat{\kappa}_m} }[/math]
[math]\displaystyle{ -\hat{k}_{0}A_{0}\delta_{0l}+a_{l}\hat{k}_{l}A_l = - \sum_{m=0}^{\infty}b_{m}\hat{\kappa}_{m}B_{ml} + \sum_{m=0}^{\infty}c_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}_m} }[/math]
[math]\displaystyle{ \sum_{m=0}^{\infty}b_{m}B_{ml}e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c_{m}B_{ml} =d_l A_l }[/math]
[math]\displaystyle{ -\sum_{m=0}^{\infty}b_{m}\hat{\kappa}_{m}B_{ml} e^{-2L\hat{\kappa}_m} + \sum_{m=0}^{\infty}c_{m}\hat{\kappa}_{m}B_{ml} = -d_l \hat{k}_l A_l }[/math]
and these are solved exactly as before.
Matlab Code
A program to calculate the coefficients for the finite dock problems can be found here finite_dock.m
Additional code
This program requires dispersion_free_surface.m to run
Solution using Symmetry
The finite dock problem is symmetric about the line [math]\displaystyle{ x=0 }[/math] and this allows us to solve the problem using symmetry. This method is numerically more efficient and requires only slight modification of the code for Eigenfunction Matching for a Semi-Infinite Dock, the developed theory here is very close to the semi-infinite solution. We decompose the solution into a symmetric and an anti-symmetric part as is described in Symmetry in Two Dimensions
Symmetric solution
The symmetric potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{0}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}(x+L)}\phi_{m}(z) , \;\;x\lt -L }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m}^{s} \frac{\cosh\kappa_{m} x}{\cosh \kappa_m L}\phi_{m}(z), \;\;-L\lt x\lt 0 }[/math]
where [math]\displaystyle{ a_{m}^{s} }[/math] and [math]\displaystyle{ b_{m}^{s} }[/math] are the coefficients of the potential in the open water regions and the dock covered region respectively.
We now match at [math]\displaystyle{ x=-L }[/math] and multiply both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}^{s}A_{l} =\sum_{n=0}^{\infty}b_{m}^{s}B_{ml} }[/math]
and
[math]\displaystyle{ -k_{0}A_{0}\delta_{0l}+a_{l}^{s}k_{l}A_l =-\sum_{m=0}^{\infty}b_{m}^{s}\kappa_{m}\tanh(\kappa_{m}L) B_{ml} }[/math]
(for full details of this derivation see Eigenfunction Matching for a Semi-Infinite Dock)
Anti-Symmetric solution
The anti-symmetric potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-k_{0}(x+L)}\phi_{0}\left( z\right) + \sum_{m=0}^{\infty}a_{m}^{a}e^{k_{m}(x+L)}\phi_{m}(z) , \;\;x\lt -L }[/math]
and
[math]\displaystyle{ \phi(x,z)=-b_0^{a}\frac{x}{L}+\sum_{m=1}^{\infty}b_{m}^{a} \frac{\sinh\kappa_{m} x}{-\sinh \kappa_m L}\phi_{m}(z), \;\;-L\lt x\lt 0 }[/math]
where [math]\displaystyle{ a_{m}^{a} }[/math] and [math]\displaystyle{ b_{m}^{a} }[/math] are the coefficients of the potential in the open water regions and the dock covered region respectively. Note that the minus sign in the expression for the dock-covered region has been added so that each component is equal to one at [math]\displaystyle{ x=-L }[/math].
We now match at [math]\displaystyle{ x=-L }[/math] and multiply both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}^{a}A_{l} =\sum_{n=0}^{\infty}b_{m}^{a}B_{ml} }[/math]
and
[math]\displaystyle{ -k_{0}A_{0}\delta_{0l}+a_{l}^{a}k_{l}A_l = - \frac{b_{0}^{a}}{L} -\sum_{m=1}^{\infty}b_{m}^{a}\kappa_{m}\coth(\kappa_{m}L) B_{ml} }[/math]
(for full details of this derivation see Eigenfunction Matching for a Semi-Infinite Dock)
Solution to the original problem
We can now reconstruct the potential for the finite dock from the two previous symmetric and anti-symmetric solution as explained in Symmetry in Two Dimensions. The amplitude in the left open-water region is simply obtained by the superposition principle
[math]\displaystyle{ a_{m} = \frac{1}{2}\left(a_{m}^{s}+a_{m}^{a}\right) }[/math]
and in the dock-covered region we now consider a potential written as
[math]\displaystyle{ \phi(x,z)=b_0 \psi_{0}(z) + \sum_{m=1}^{\infty}b_{m} \frac{\cos\kappa_{m} x}{\cos \kappa_m L}\psi_{m}(z) -c_0 \frac{x}{L} \psi_{0}(z) + \sum_{m=1}^{\infty}c_{m} \frac{\sin\kappa_{m} x}{-\sin \kappa_m L} \psi_{m}(z) , \;\;-L\lt x\lt L }[/math]
and we obtain
[math]\displaystyle{ b_{m}=\frac{1}{2}\left(b_{m}^{s}+b_{m}^{a}\right) }[/math].
[math]\displaystyle{ c_{m}=\frac{1}{2}\left(b_{m}^{s}-b_{m}^{a}\right) }[/math].
Finally, in the right open-water region
[math]\displaystyle{ d_{m} = \frac{1}{2}\left(a_{m}^{s}-a_{m}^{a}\right) }[/math]