One of the most interesting freatures of the KdV is the exisitence of
infinitely many conservation laws. Lets begin with some basics of
conservation laws. If we can write our equation of the form
[math]\displaystyle{
\partial _{t}T\left( u\right) +\partial _{x}X\left( u\right) =0
}[/math]
Then we can integrate this equation from [math]\displaystyle{ -\infty }[/math] to [math]\displaystyle{ \infty }[/math] to obtain
[math]\displaystyle{
\int_{-\infty }^{\infty }\partial _{t}T\left( u\right) \mathrm{d} x = -\int_{-\infty
}^{\infty }\partial _{x}X\left( u\right) \mathrm{d} x
}[/math]
The second integral will be zero if [math]\displaystyle{ u\rightarrow 0 }[/math] as [math]\displaystyle{ x\rightarrow \pm
\infty . }[/math] Therefore
[math]\displaystyle{
\partial _{t}\int_{-\infty }^{\infty }T\left( u\right) \mathrm{d} x=0
}[/math]
so that the quantity
[math]\displaystyle{
\int_{-\infty }^{\infty }T\left( u\right) \mathrm{d} x
}[/math]
must be conserved by the solution of the equation. For the KdV we can write
[math]\displaystyle{
\partial _{t}u+\partial _{x}\left( 3u^{2}+\partial _{x}^{2}u\right) =0.
}[/math]
so that we immediately see that the quantity
[math]\displaystyle{
\int_{-\infty }^{\infty }u\mathrm{d} x
}[/math]
is conserved. This corresponds to conservation of momentum. We can also
write the KdV equation as
[math]\displaystyle{
\partial _{t}\left( u^{2}\right) +\partial _{x}\left( 4u^{3}+2u\partial
_{x}^{2}u-\left( \partial _{x}u\right) ^{2}\right) = 0
}[/math]
so that the quantity
[math]\displaystyle{
\int_{-\infty }^{\infty }u^{2}\mathrm{d} x
}[/math]
must be conserved. This corresponds to conservation of energy. It turns out
that there is an infinite number of conserved quantities and we give here
the proof of this.
Modified KdV
The modified KdV is
[math]\displaystyle{
\partial _{t}v-3\partial _{x}\left( v^{3}\right) +\partial _{x}^{3}v=0
}[/math]
It is connected to the KdV by Miura's transformation
[math]\displaystyle{
u=-\left( v^{2}+\partial _{x}v\right)
}[/math]
If we substitute this into the KdV we obtain
[math]\displaystyle{
\partial _{t}u+3\partial _{x}\left( u^{2}\right) +\partial
_{x}^{3}u=-(2v+\partial _{x})\left( \partial _{t}v-3\partial _{x}\left(
v^{3}\right) +\partial _{x}^{3}v\right)
}[/math]
Note that this shows that every solution of the mKdV is a solution of the
KdV but not vice versa.
Proof of an Infinite Number of Conservation Laws
An ingenious proof of the exisitence of an infinite number of conservation
laws can be obtain from a generalization of Miura's transformation
[math]\displaystyle{
u=w-\varepsilon \partial _{x}w-\varepsilon ^{2}w^{2}
}[/math]
If we substitute this into the KdV we obtain
[math]\displaystyle{
\partial _{t}u+3\partial _{x}\left( u^{2}\right) +\partial _{x}^{3}u=\left(
1-\varepsilon \partial _{x}-2\varepsilon ^{2}w\right) \left( \partial
_{t}w+6\left( w-\varepsilon ^{2}w^{2}\right) \partial _{x}w+\partial
_{x}^{3}w\right)
}[/math]
Therefore [math]\displaystyle{ u }[/math] solves the KdV equation provided that
[math]\displaystyle{
\partial _{t}w+6\left( w-\varepsilon ^{2}w^{2}\right) \partial
_{x}w+\partial _{x}^{3}w=0
}[/math]
We write the solution to this equation as a formal power series
[math]\displaystyle{
w\left( x,t,\varepsilon \right) =\sum_{n=0}^{\infty }\varepsilon
^{n}w_{n}\left( x,t\right)
}[/math]
Since the equation is in conservation form then
[math]\displaystyle{
\int_{-\infty }^{\infty }w\left( x,t,\varepsilon \right) \mathrm{d} x = \mathrm{constant}
}[/math]
and since this is true for all [math]\displaystyle{ \varepsilon }[/math] this implies that
[math]\displaystyle{
\int_{-\infty }^{\infty }w_{n}\left( x,t\right) \mathrm{d} x = \mathrm{constant}
}[/math]
We then consider the expression
[math]\displaystyle{
u=w-\varepsilon \partial _{x}w-\varepsilon ^{2}w^{2}
}[/math]
which implies that
[math]\displaystyle{
u=\sum_{n=0}^{\infty }\varepsilon ^{n}w_{n}\left( x,t\right) -\varepsilon
\partial _{x}\left( \sum_{n=0}^{\infty }\varepsilon ^{n}w_{n}\left(
x,t\right) \right) -\varepsilon ^{2}\left( \sum_{n=0}^{\infty }\varepsilon
^{n}w_{n}\left( x,t\right) \right) ^{2}
}[/math]
It we equate powers of [math]\displaystyle{ \varepsilon }[/math] we obtain
[math]\displaystyle{
u=w_{0}
}[/math]
[math]\displaystyle{
0=w_{1}-\partial _{x}w_{0}
}[/math]
[math]\displaystyle{
0=w_{2}-\partial _{x}w_{1}-w_{0}^{2}
}[/math]
[math]\displaystyle{
0=w_{3}-\partial _{x}w_{2}-2w_{0}w_{1}
}[/math]
We can solve recurrsively to obtain
[math]\displaystyle{
w_{0}=u
}[/math]
[math]\displaystyle{
w_{1}=\partial _{x}u
}[/math]
[math]\displaystyle{
w_{2} = \partial_{x}^2 u + u^{2}
}[/math]
[math]\displaystyle{
w_{3} = \partial _{x}^3 u + 4 u \partial_{x} u
}[/math]
Note that each of the even conservation laws is just the derivative (with some modification) of the previous law and
therefore does not actually provide a new conservation law.