Waves on a Variable Beam

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduction

We consider here the equations for a non-uniform free beam. We begin by presenting the theory for a uniform beam.<br\>

An example of the motion for a non-uniform beam is demonstrated below:

Vibration of variable beam

Equations for a beam

There are various beam theories that can be used to describe the motion of the beam. The simplest theory is the Bernoulli-Euler Beam theory (other beam theories include the Timoshenko Beam theory and Reddy-Bickford Beam theory where shear deformation of higher order is considered). For a Bernoulli-Euler Beam, the equation of motion is given by the following

[math]\displaystyle{ \partial_x^2\left(\beta(x)\partial_x^2 \zeta\right) + \gamma(x) \partial_t^2 \zeta = p }[/math]

where [math]\displaystyle{ \beta(x) }[/math] is the non dimensionalised flexural rigidity, and [math]\displaystyle{ \gamma }[/math] is non-dimensionalised linear mass density function. Note that this equations simplifies if the plate has constant properties (and that [math]\displaystyle{ h }[/math] is the thickness of the plate, [math]\displaystyle{ p }[/math] is the pressure and [math]\displaystyle{ \zeta }[/math] is the plate vertical displacement) .

The edges of the plate can satisfy a range of boundary conditions. The natural boundary condition (i.e. free-edge boundary conditions).

[math]\displaystyle{ \partial_x^2 \zeta = 0, \,\,\partial_x^3 \zeta = 0 }[/math]

at the edges of the plate.

The problem is subject to the initial conditions

[math]\displaystyle{ \zeta(x,0)=f(x) \,\! }[/math]
[math]\displaystyle{ \partial_t \zeta(x,0)=g(x) }[/math]

Solution for a uniform beam in eigenfunctions with no pressure

If the beam is uniform the equations can be written as

[math]\displaystyle{ \beta \frac{\partial^{4}\zeta}{\partial x^{4}} + \gamma \frac{\partial^{2}\zeta}{\partial t^{2}}=0 }[/math]

We can express the deflection as the series

[math]\displaystyle{ \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k_n t) + \sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k_n t)}{k_n} }[/math]

where [math]\displaystyle{ X_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ k_m = \lambda^2_n \sqrt{\beta/\gamma} }[/math] where [math]\displaystyle{ \lambda_n }[/math] are the eigenfunctions.

Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:

[math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
[math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]

Note that we cannot give the plate an initial velocity that contains a rigid body motions which is why the sum starts at [math]\displaystyle{ n=2 }[/math] for time derivative.

Variational Techniques

As an alternative to solving the eigenvalue problem, we can equivalently minimise the Rayleigh Quotient (Linton and McIver 2001):

[math]\displaystyle{ R[\zeta]=\frac{\varepsilon[\zeta]}{H[\zeta]} }[/math]

where [math]\displaystyle{ \varepsilon[\zeta] \,\! }[/math] is known as the energy functional, and [math]\displaystyle{ H[\zeta] \,\! }[/math] is some constraint.

In the case of a uniform beam with zero transverse load, our energy functional is (Lanczos 1949):

[math]\displaystyle{ \varepsilon[\zeta]=\frac{\beta}{2}\int_{-L}^{L}\left(\frac{\partial^2 v}{\partial x^2} \right)^2 \mathrm{d}x }[/math]

If we choose

[math]\displaystyle{ H[\zeta]=\int_{-L}^{L}\gamma \zeta^2 \mathrm{d}x=1 }[/math]

Then minimizing the Rayleigh Quotient can be expressed as a variational problem

min [math]\displaystyle{ R[\zeta]=\frac{\beta}{2}\int_{-L}^{L}\left(\frac{\partial^2 \zeta}{\partial x^2} \right)^2 \mathrm{d}x }[/math]

subject to [math]\displaystyle{ \int_{-L}^{L}\gamma \zeta^2 \mathrm{d}x=1 }[/math]

which will in turn, also solve our eigenvalue problem.

Rayleigh-Ritz method

We can essentially replace the variational problem of finding a [math]\displaystyle{ y(x) \,\! }[/math] that extremises [math]\displaystyle{ J[y] \,\! }[/math] to finding a set of constants [math]\displaystyle{ a_1, a_2, ..., a_N \,\! }[/math] which extremise [math]\displaystyle{ J[a_1, a_2, ..., a_N] \,\! }[/math], through using the Rayleigh-Ritz method.

We solve

[math]\displaystyle{ \frac{\partial}{\partial a_k}J[a_1, a_2, ..., a_N]=0 \,\! }[/math]

for all [math]\displaystyle{ k=1,2,...,N \,\! }[/math].

In our example of non-uniform beams, the assumption is made that we are able to approximate the eigenfunctions for a non-uniform beam as a linear combination of the eigenfunctions for a linear beam:

[math]\displaystyle{ \widehat{X}_n=\sum_{i=1}^{N}a_{i}X_{i}(x) \,\! }[/math]

Solution for a Non-uniform free beam in eigenfunctions

In the case of a non-uniform free beam, the Euler-Bernoulli beam equation becomes:

[math]\displaystyle{ \frac{\partial^2}{\partial x^2}\left( \beta(x) \frac{\partial^{2}\zeta}{\partial x^{2}}\right) +\gamma(x)\frac{\partial^{2}\zeta}{\partial t^{2}}=0 \,\! }[/math]

Using separation of variables, where [math]\displaystyle{ \zeta(x,t)=\widehat{X}(x)\widehat{T}(t) \,\! }[/math], we obtain a corresponding eigenfunction problem (with eigenvalues denoted by [math]\displaystyle{ \mu_n=\widehat{k}_n^4 \,\! }[/math]):

[math]\displaystyle{ \frac{\partial^2}{\partial x^2}\left( \beta(x) \frac{\partial^{2} \widehat{X}_n}{\partial x^{2}}\right)=\gamma(x)\mu_n \widehat{X}_n \,\! }[/math]

which leads us to the following variational expression:

min [math]\displaystyle{ J[\widehat{X}_n]=\frac{1}{2}\int_{-L}^{L} \bigg\{\beta(x)(\widehat{X}_n^{''})^2 -\mu_n \gamma(x) \widehat{X}_n^2 \bigg\}\mathrm{d}x }[/math]

We can approximate this using Rayleigh-Ritz and obtain:

[math]\displaystyle{ J[\vec{a}]=\frac{1}{2}\int_{-L}^{L} \bigg\{\beta(x)[\sum_{i=1}^{N}a_{i}{X}_{i}^{''}]^2 -\mu_i \gamma(x) [\sum_{i=1}^{N}a_{i}{X}_{i}]^2 \bigg\}\mathrm{d}x \,\! }[/math]

Then extremising [math]\displaystyle{ J[\vec{a}] \,\! }[/math] as follows

[math]\displaystyle{ \frac{\partial}{\partial a_k}J[\vec{a}]=0 \,\! }[/math]

for all [math]\displaystyle{ k=1,2,...,N \,\! }[/math], allows us to obtain:

[math]\displaystyle{ \frac{\partial}{\partial a_k}J[\vec{a}]=\sum_{i=1}^{N} \left\{ \int_{-L}^{L}\beta(x) {X}_{i}^{''} {X}_{k}^{''}\mathrm{d}x -\mu_i \int_{-L}^{L} \gamma(x){X}_{i}{X}_{k}\mathrm{d}x\right\}a_i=0 \,\! }[/math]

for all [math]\displaystyle{ k=1,2,...N \,\! }[/math] (here [math]\displaystyle{ \mu_i \,\! }[/math] denotes both the Lagrange multiplier and eigenvalues of a non-uniform beam)

Converting to Matrix Form

If we define

[math]\displaystyle{ K_{ik}=\int_{-L}^{L}\beta(x) {X}_{i}^{''} {X}_{k}^{''}\mathrm{d}x \,\! }[/math]
[math]\displaystyle{ M_{ik}=\int_{-L}^{L} \gamma(x){X}_{i}{X}_{k}\mathrm{d}x \,\! }[/math]

then for all [math]\displaystyle{ k=1,2,...N \,\! }[/math]:

[math]\displaystyle{ \frac{\partial}{\partial a_k}J[\mathbf{a}]=\sum_{i=1}^{N}(K_{ik}-\mu_i M_{ik})a_i=0 \,\! }[/math]

Let us create the matrix [math]\displaystyle{ K \,\! }[/math], with elements [math]\displaystyle{ K_{ik} \,\! }[/math], the matrix [math]\displaystyle{ M \,\! }[/math], with elements [math]\displaystyle{ M_{ik} \,\! }[/math], the sparse matrix [math]\displaystyle{ \Lambda \,\! }[/math] with [math]\displaystyle{ \mu_i \,\! }[/math] terms on the diagonal, and the vector [math]\displaystyle{ \mathbf{a} \,\! }[/math]. We can consequently express the above sum in the following way:

[math]\displaystyle{ (K-\Lambda M)\mathbf{a} = 0 \,\! }[/math]

So we can solve for [math]\displaystyle{ \mathbf{a} \,\! }[/math] in any of the problems below to obtain coefficients [math]\displaystyle{ a_i \,\! }[/math]:

[math]\displaystyle{ (K-\Lambda M)\mathbf{a} = 0 \,\! }[/math]
[math]\displaystyle{ K\mathbf{a}=\Lambda M\mathbf{a} \,\! }[/math]
[math]\displaystyle{ (M^{-1}K)\mathbf{a}=\Lambda \mathbf{a} \,\! }[/math]

Quadrature

Rather than tediously evaluating an integral for each element of the matrices [math]\displaystyle{ K \,\! }[/math] and [math]\displaystyle{ M \,\! }[/math], we can break up the integral into subintervals with weights [math]\displaystyle{ w_h \,\! }[/math] using Composite Simpson's Rule:

[math]\displaystyle{ \int_a^b f(x) dx \approx \frac{h}{3} \left[ f(x_0)+2 \sum_{j=1}^{n/2-1}f(x_{2j})+4\sum_{j=1}^{n/2}f(x_{2j-1})+f(x_n)\right] \,\! }[/math]
[math]\displaystyle{ \approx \frac{h}{3}\left[ f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+4f(x_{n-1})+f(x_n)\right] \,\! }[/math]

So we can express [math]\displaystyle{ K_{ik} \,\! }[/math] as follows:

[math]\displaystyle{ K_{ik}=\int_{-L}^{L}\beta(x) {X}_{i}^{''} {X}_{k}^{''}\mathrm{d}x \,\! }[/math]
[math]\displaystyle{ \approx \sum \beta(x_h){X}_{i}^{''}(x_h) {X}_{k}^{''}(x_h)w_h \,\! }[/math]
[math]\displaystyle{ \approx \vec{X}_{i}^{''} H \vec{X}_{k}^{''T} \,\! }[/math]

where

[math]\displaystyle{ \vec{X}_i^{''}=[X_i^{''}(x_1),X_i^{''}(x_2),...,X_i^{''}(x_h)] \,\! }[/math]

[math]\displaystyle{ H = \begin{bmatrix} \beta(x_1)w_1 & 0 & ... &0 \\ 0 & \beta(x_2)w_2 & ... &0 \\ \vdots & & \ddots&\vdots \\ 0 & ... & ...&\beta(x_h)w_h \end{bmatrix} \,\! }[/math]

and weights [math]\displaystyle{ w_h \,\! }[/math] are defined as: [math]\displaystyle{ w_1=h/3, w_2=4h/3, ... , w_h=h/3 \,\! }[/math].

We can extend this concept to the the full matrix [math]\displaystyle{ K \,\! }[/math] if we form:

[math]\displaystyle{ K=X^{''}_{mat}H X^{''T}_{mat} \,\! }[/math]

where

[math]\displaystyle{ X^{''}_{mat} = \begin{bmatrix} {X}_{1}^{''}(x_1) & {X}_{1}^{''}(x_2) & ... & {X}^{''}_{1}(x_h) \\ {X}_{2}^{''}(x_1) & {X}_{2}^{''}(x_2) & ... & {X}^{''}_{2}(x_h) \\ \vdots & \vdots & & \vdots \\ {X}_{N}^{''}(x_1) & {X}_{N}^{''}(x_2) & ... & {X}^{''}_{N}(x_h) \end{bmatrix} \,\! }[/math]

For [math]\displaystyle{ M \,\! }[/math] we use an identical approach:

[math]\displaystyle{ M=X_{mat}J X^{T}_{mat} \,\! }[/math]

where

[math]\displaystyle{ J = \begin{bmatrix} \gamma(x_1)w_1 & 0 & ... &0 \\ 0 & \gamma(x_2)w_2 & ... &0 \\ \vdots & & \ddots&\vdots \\ 0 & ... & ...&\gamma(x_h)w_h \end{bmatrix} \,\! }[/math]

[math]\displaystyle{ X_{mat} = \begin{bmatrix} {X}_{1}(x_1) & {X}_{1}(x_2) & ... & {X}_{1}(x_h) \\ {X}_{2}(x_1) & {X}_{2}(x_2) & ... & {X}_{2}(x_h) \\ \vdots & \vdots & & \vdots \\ {X}_{N}(x_1) & {X}_{N}(x_2) & ... & {X}_{N}(x_h) \end{bmatrix} \,\! }[/math]

Evaluation

Using the MATLAB program eig.m, we can solve the eigenvalue problem

[math]\displaystyle{ K\vec{a}=\Lambda M\vec{a} \,\! }[/math]

using the either of the commands

[Ai_values,nonuniform_eigvals] = eig(M^(-1)*K)
[Ai_values,nonuniform_eigvals] = eig(K,M)

Where the diagonal of nonuniform_eigvals denotes the eigenvalues for the nonuniform beam ([math]\displaystyle{ \mu_n \,\! }[/math]), and each column of the matrix Ai_values represents the coefficients [math]\displaystyle{ a_1, a_2,... \,\! }[/math] corresponding to [math]\displaystyle{ \widehat{X}_n \,\! }[/math]:

[math]\displaystyle{ \widehat{X}_n=\sum_{i=1}^{N}a_{i}X_{i}(x) \,\! }[/math]

We can obtain the matrix [math]\displaystyle{ \widehat{X}_{mat} \,\! }[/math] by taking Xhat_mat= Ai_valuesTX_mat.

Non-uniform beam revisited

We have already solved the eigenfunction problem. We now turn our attention to the time component arising from separation of variables:

[math]\displaystyle{ \widehat{T}_n^{''}+\mu_n\widehat{T}_n=0 \,\! }[/math]

which has solutions of the form

[math]\displaystyle{ \widehat{T}_n(t)=A_n \cos(\widehat{k}_n^2 t)+B_n \sin(\widehat{k}_n^2 t) \,\! }[/math]

Introducing the initial conditions

[math]\displaystyle{ v(x,0)=f(x) \,\! }[/math]
[math]\displaystyle{ \frac{\partial v(x,0)}{\partial t}=g(x)\,\! }[/math]

Then using the the first of these initial conditions we obtain:

[math]\displaystyle{ \sum_{n=0}^{\infty}A_n\widehat{X}_n(x)=f(x) \,\! }[/math]

multiplying by [math]\displaystyle{ m(x)\widehat{X}_n(x) \,\! }[/math] and integrating allows us to obtain:

[math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)m(x)\widehat{X}_n(x)\mathrm{d}x}{\int_{-L}^{L}m(x)\widehat{X}_n(x)\widehat{X}_n(x)\mathrm{d}x} \,\! }[/math]

Then using the second initial condition, and applying the same technique yields

[math]\displaystyle{ B_n=\frac{1}{\widehat{k}_n^2}\frac{\int_{-L}^{L}g(x)m(x)\widehat{X}_n(x)\mathrm{d}x}{\int_{-L}^{L}m(x)\widehat{X}_n(x)\widehat{X}_n(x)\mathrm{d}x} \,\! }[/math]

Consequently,

[math]\displaystyle{ v(x,t)=A_0\widehat{X}_0(x)+A_1\widehat{X}_1(x)+\sum_{n=2}^{\infty} A_n\widehat{X}_n(x)\cos(\widehat{k}_n^2 t)+\sum_{n=2}^{\infty} B_n\widehat{X}_n(x) \sin(\widehat{k}_n^2 t) \,\! }[/math]

where [math]\displaystyle{ \widehat{X}_0(x) \,\! }[/math] and [math]\displaystyle{ \widehat{X}_2(x) \,\! }[/math] are the two rigid modes of the non-uniform beam. Note that [math]\displaystyle{ B_0 \,\! }[/math] and [math]\displaystyle{ B_1 \,\! }[/math] do not exist.

Matlab Code

A program to solve for a variable beam can be found here variable_beam.m

Additional code

This program requires

References

Lanczos 1949, Linton and McIver 2001, Rao 1986